ترغب بنشر مسار تعليمي؟ اضغط هنا

Autonomic Management of Power Consumption with IoT and Fog Computing

71   0   0.0 ( 0 )
 نشر من قبل Fernando Koch
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a system for Autonomic Management of Power Consumption in setups that involve Internet of Things (IoT) and Fog Computing. The Central IoT (CIoT) is a Fog Computing based solution to provide advanced orchestration mechanisms to manage dynamic duty cycles for extra energy savings. The solution works by adjusting Home (H) and Away (A) cycles based on contextual information, like environmental conditions, user behavior, behavior variation, regulations on energy and network resources utilization, among others. Performance analysis through a proof of concept present average energy savings of 58.4%, reaching up to 61.51% when augmenting with a scheduling system and variable long sleep cycles (LS). However, there is no linear relation increasing LS time and more savings. The significance of this research is to promote autonomic management as a solution to develop more energy efficient buildings and smarter cities, towards sustainable goals.



قيم البحث

اقرأ أيضاً

217 - Mohammad Goudarzi , Qifan Deng , 2021
Edge/Fog computing is a novel computing paradigm that provides resource-limited Internet of Things (IoT) devices with scalable computing and storage resources. Compared to cloud computing, edge/fog servers have fewer resources, but they can be access ed with higher bandwidth and less communication latency. Thus, integrating edge/fog and cloud infrastructures can support the execution of diverse latency-sensitive and computation-intensive IoT applications. Although some frameworks attempt to provide such integration, there are still several challenges to be addressed, such as dynamic scheduling of different IoT applications, scalability mechanisms, multi-platform support, and supporting different interaction models. FogBus2, as a new python-based framework, offers a lightweight and distributed container-based framework to overcome these challenges. In this chapter, we highlight key features of the FogBus2 framework alongside describing its main components. Besides, we provide a step-by-step guideline to set up an integrated computing environment, containing multiple cloud service providers (Hybrid-cloud) and edge devices, which is a prerequisite for any IoT application scenario. To obtain this, a low-overhead communication network among all computing resources is initiated by the provided scripts and configuration files. Next, we provide instructions and corresponding code snippets to install and run the main framework and its integrated applications. Finally, we demonstrate how to implement and integrate several new IoT applications and custom scheduling and scalability policies with the FogBus2 framework.
Fog/Edge computing model allows harnessing of resources in the proximity of the Internet of Things (IoT) devices to support various types of real-time IoT applications. However, due to the mobility of users and a wide range of IoT applications with d ifferent requirements, it is a challenging issue to satisfy these applications requirements. The execution of IoT applications exclusively on one fog/edge server may not be always feasible due to limited resources, while execution of IoT applications on different servers needs further collaboration among servers. Also, considering user mobility, some modules of each IoT application may require migration to other servers for execution, leading to service interruption and extra execution costs. In this article, we propose a new weighted cost model for hierarchical fog computing environments, in terms of the response time of IoT applications and energy consumption of IoT devices, to minimize the cost of running IoT applications and potential migrations. Besides, a distributed clustering technique is proposed to enable the collaborative execution of tasks, emitted from application modules, among servers. Also, we propose an application placement technique to minimize the overall cost of executing IoT applications on multiple servers in a distributed manner. Furthermore, a distributed migration management technique is proposed for the potential migration of applications modules to other remote servers as the users move along their path. Besides, failure recovery methods are embedded in the clustering, application placement, and migration management techniques to recover from unpredicted failures. The performance results show that our technique significantly improves its counterparts in terms of placement deployment time, average execution cost of tasks, total number of migrations, total number of interrupted tasks, and cumulative migration cost.
We introduce Cloud4IoT, a platform offering automatic deployment, orchestration and dynamic configuration of IoT support software components and data-intensive applications for data processing and analytics, thus enabling plug-and-play integration of new sensor objects and dynamic workload scalability. Cloud4IoT enables the concept of Infrastructure as Code in the IoT context: it empowers IoT operations with the flexibility and elasticity of Cloud services. Furthermore it shifts traditionally centralized Cloud architectures towards a more distributed and decentralized computation paradigm, as required by IoT technologies, bridging the gap between Cloud Computing and IoT ecosystems. Thus, Cloud4IoT is playing a role similar to the one covered by solutions like Fog Computing, Cloudlets or Mobile Edge Cloud. The hierarchical architecture of Cloud4IoThosts a central Cloud platform and multiple remote edge Cloud modules supporting dedicated devices, namely the IoT Gateways, through which new sensor objects are made accessible to the platform. Overall, the platform is designed in order to support systems where IoT-based and data intensive applications may pose specific requirements for low latency, restricted available bandwidth, or data locality. Cloud4IoT is built on several Open Source technologies for containerisation and implementations of standards, protocols and services for the IoT. We present the implementation of the platform and demonstrate it in two different use cases.
Spatial Data Infrastructure (SDI) is an important concept for sharing spatial data across the web. With cumulative techniques with spatial cloud computing and fog computing, SDI has the greater potential and has been emerged as a tool for processing, analysis and transmission of spatial data. The Fog computing is a paradigm where Fog devices help to increase throughput and reduce latency at the edge of the client with respect to cloud computing environment. This paper proposed and developed a fog computing based SDI framework for mining analytics from spatial big data for mineral resources management in India. We built a prototype using Raspberry Pi, an embedded microprocessor. We validated by taking suitable case study of mineral resources management in India by doing preliminary analysis including overlay analysis. Results showed that fog computing hold a great promise for analysis of spatial data. We used open source GIS i.e. QGIS and QIS plugin for reducing the transmission to cloud from the fog node.
Internet of Things (IoT) has already proven to be the building block for next-generation Cyber-Physical Systems (CPSs). The considerable amount of data generated by the IoT devices needs latency-sensitive processing, which is not feasible by deployin g the respective applications in remote Cloud datacentres. Edge/Fog computing, a promising extension of Cloud at the IoT-proximate network, can meet such requirements for smart CPSs. However, the structural and operational differences of Edge/Fog infrastructure resist employing Cloud-based service regulations directly to these environments. As a result, many research works have been recently conducted, focusing on efficient application and resource management in Edge/Fog computing environments. Scalable Edge/Fog infrastructure is a must to validate these policies, which is also challenging to accommodate in the real-world due to high cost and implementation time. Considering simulation as a key to this constraint, various software has been developed that can imitate the physical behaviour of Edge/Fog computing environments. Nevertheless, the existing simulators often fail to support advanced service management features because of their monolithic architecture, lack of actual dataset, and limited scope for a periodic update. To overcome these issues, we have developed multiple simulation models for service migration, dynamic distributed cluster formation, and microservice orchestration for Edge/Fog computing in this work and integrated with the existing iFogSim simulation toolkit for launching it as iFogSim2. The performance of iFogSim2 and its built-in policies are evaluated using three use case scenarios and compared with the contemporary simulators and benchmark policies under different settings. Results indicate that the proposed solution outperform others in service management time, network usage, ram consumption, and simulation time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا