ﻻ يوجد ملخص باللغة العربية
We introduce Cloud4IoT, a platform offering automatic deployment, orchestration and dynamic configuration of IoT support software components and data-intensive applications for data processing and analytics, thus enabling plug-and-play integration of new sensor objects and dynamic workload scalability. Cloud4IoT enables the concept of Infrastructure as Code in the IoT context: it empowers IoT operations with the flexibility and elasticity of Cloud services. Furthermore it shifts traditionally centralized Cloud architectures towards a more distributed and decentralized computation paradigm, as required by IoT technologies, bridging the gap between Cloud Computing and IoT ecosystems. Thus, Cloud4IoT is playing a role similar to the one covered by solutions like Fog Computing, Cloudlets or Mobile Edge Cloud. The hierarchical architecture of Cloud4IoThosts a central Cloud platform and multiple remote edge Cloud modules supporting dedicated devices, namely the IoT Gateways, through which new sensor objects are made accessible to the platform. Overall, the platform is designed in order to support systems where IoT-based and data intensive applications may pose specific requirements for low latency, restricted available bandwidth, or data locality. Cloud4IoT is built on several Open Source technologies for containerisation and implementations of standards, protocols and services for the IoT. We present the implementation of the platform and demonstrate it in two different use cases.
We introduce a system for Autonomic Management of Power Consumption in setups that involve Internet of Things (IoT) and Fog Computing. The Central IoT (CIoT) is a Fog Computing based solution to provide advanced orchestration mechanisms to manage dyn
A blockchain and smart contract enabled security mechanism for IoT applications has been reported recently for urban, financial, and network services. However, due to the power-intensive and a low-throughput consensus mechanism in existing blockchain
Virtual Observatory (VO) is a data-intensively online astronomical research and education environment, which takes advantages of advanced information technologies to achieve seamless and global access to astronomical information. AstroCloud is a cybe
Cloud services have recently started undergoing a major shift from monolithic applications, to graphs of hundreds of loosely-coupled microservices. Microservices fundamentally change a lot of assumptions current cloud systems are designed with, and p
This paper introduces RankMap, a platform-aware end-to-end framework for efficient execution of a broad class of iterative learning algorithms for massive and dense datasets. Our framework exploits data structure to factorize it into an ensemble of l