ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring Explicit and Implicit Visual Relationships for Image Captioning

82   0   0.0 ( 0 )
 نشر من قبل Zeliang Song
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Image captioning is one of the most challenging tasks in AI, which aims to automatically generate textual sentences for an image. Recent methods for image captioning follow encoder-decoder framework that transforms the sequence of salient regions in an image into natural language descriptions. However, these models usually lack the comprehensive understanding of the contextual interactions reflected on various visual relationships between objects. In this paper, we explore explicit and implicit visual relationships to enrich region-level representations for image captioning. Explicitly, we build semantic graph over object pairs and exploit gated graph convolutional networks (Gated GCN) to selectively aggregate local neighbors information. Implicitly, we draw global interactions among the detected objects through region-based bidirectional encoder representations from transformers (Region BERT) without extra relational annotations. To evaluate the effectiveness and superiority of our proposed method, we conduct extensive experiments on Microsoft COCO benchmark and achieve remarkable improvements compared with strong baselines.



قيم البحث

اقرأ أيضاً

Recently, image captioning has aroused great interest in both academic and industrial worlds. Most existing systems are built upon large-scale datasets consisting of image-sentence pairs, which, however, are time-consuming to construct. In addition, even for the most advanced image captioning systems, it is still difficult to realize deep image understanding. In this work, we achieve unpaired image captioning by bridging the vision and the language domains with high-level semantic information. The motivation stems from the fact that the semantic concepts with the same modality can be extracted from both images and descriptions. To further improve the quality of captions generated by the model, we propose the Semantic Relationship Explorer, which explores the relationships between semantic concepts for better understanding of the image. Extensive experiments on MSCOCO dataset show that we can generate desirable captions without paired datasets. Furthermore, the proposed approach boosts five strong baselines under the paired setting, where the most significant improvement in CIDEr score reaches 8%, demonstrating that it is effective and generalizes well to a wide range of models.
We propose an Auto-Parsing Network (APN) to discover and exploit the input datas hidden tree structures for improving the effectiveness of the Transformer-based vision-language systems. Specifically, we impose a Probabilistic Graphical Model (PGM) pa rameterized by the attention operations on each self-attention layer to incorporate sparse assumption. We use this PGM to softly segment an input sequence into a few clusters where each cluster can be treated as the parent of the inside entities. By stacking these PGM constrained self-attention layers, the clusters in a lower layer compose into a new sequence, and the PGM in a higher layer will further segment this sequence. Iteratively, a sparse tree can be implicitly parsed, and this trees hierarchical knowledge is incorporated into the transformed embeddings, which can be used for solving the target vision-language tasks. Specifically, we showcase that our APN can strengthen Transformer based networks in two major vision-language tasks: Captioning and Visual Question Answering. Also, a PGM probability-based parsing algorithm is developed by which we can discover what the hidden structure of input is during the inference.
We propose Visual News Captioner, an entity-aware model for the task of news image captioning. We also introduce Visual News, a large-scale benchmark consisting of more than one million news images along with associated news articles, image captions, author information, and other metadata. Unlike the standard image captioning task, news images depict situations where people, locations, and events are of paramount importance. Our proposed method can effectively combine visual and textual features to generate captions with richer information such as events and entities. More specifically, built upon the Transformer architecture, our model is further equipped with novel multi-modal feature fusion techniques and attention mechanisms, which are designed to generate named entities more accurately. Our method utilizes much fewer parameters while achieving slightly better prediction results than competing methods. Our larger and more diverse Visual News dataset further highlights the remaining challenges in captioning news images.
114 - Dandan Guo , Ruiying Lu , Bo Chen 2021
Observing a set of images and their corresponding paragraph-captions, a challenging task is to learn how to produce a semantically coherent paragraph to describe the visual content of an image. Inspired by recent successes in integrating semantic top ics into this task, this paper develops a plug-and-play hierarchical-topic-guided image paragraph generation framework, which couples a visual extractor with a deep topic model to guide the learning of a language model. To capture the correlations between the image and text at multiple levels of abstraction and learn the semantic topics from images, we design a variational inference network to build the mapping from image features to textual captions. To guide the paragraph generation, the learned hierarchical topics and visual features are integrated into the language model, including Long Short-Term Memory (LSTM) and Transformer, and jointly optimized. Experiments on public dataset demonstrate that the proposed models, which are competitive with many state-of-the-art approaches in terms of standard evaluation metrics, can be used to both distill interpretable multi-layer topics and generate diverse and coherent captions.
Image captioning is a research hotspot where encoder-decoder models combining convolutional neural network (CNN) and long short-term memory (LSTM) achieve promising results. Despite significant progress, these models generate sentences differently fr om human cognitive styles. Existing models often generate a complete sentence from the first word to the end, without considering the influence of the following words on the whole sentence generation. In this paper, we explore the utilization of a human-like cognitive style, i.e., building overall cognition for the image to be described and the sentence to be constructed, for enhancing computer image understanding. This paper first proposes a Mutual-aid network structure with Bidirectional LSTMs (MaBi-LSTMs) for acquiring overall contextual information. In the training process, the forward and backward LSTMs encode the succeeding and preceding words into their respective hidden states by simultaneously constructing the whole sentence in a complementary manner. In the captioning process, the LSTM implicitly utilizes the subsequent semantic information contained in its hidden states. In fact, MaBi-LSTMs can generate two sentences in forward and backward directions. To bridge the gap between cross-domain models and generate a sentence with higher quality, we further develop a cross-modal attention mechanism to retouch the two sentences by fusing their salient parts as well as the salient areas of the image. Experimental results on the Microsoft COCO dataset show that the proposed model improves the performance of encoder-decoder models and achieves state-of-the-art results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا