ترغب بنشر مسار تعليمي؟ اضغط هنا

Visual News: Benchmark and Challenges in News Image Captioning

176   0   0.0 ( 0 )
 نشر من قبل Fuxiao Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose Visual News Captioner, an entity-aware model for the task of news image captioning. We also introduce Visual News, a large-scale benchmark consisting of more than one million news images along with associated news articles, image captions, author information, and other metadata. Unlike the standard image captioning task, news images depict situations where people, locations, and events are of paramount importance. Our proposed method can effectively combine visual and textual features to generate captions with richer information such as events and entities. More specifically, built upon the Transformer architecture, our model is further equipped with novel multi-modal feature fusion techniques and attention mechanisms, which are designed to generate named entities more accurately. Our method utilizes much fewer parameters while achieving slightly better prediction results than competing methods. Our larger and more diverse Visual News dataset further highlights the remaining challenges in captioning news images.



قيم البحث

اقرأ أيضاً

The task of news article image captioning aims to generate descriptive and informative captions for news article images. Unlike conventional image captions that simply describe the content of the image in general terms, news image captions follow jou rnalistic guidelines and rely heavily on named entities to describe the image content, often drawing context from the whole article they are associated with. In this work, we propose a new approach to this task, motivated by caption guidelines that journalists follow. Our approach, Journalistic Guidelines Aware News Image Captioning (JoGANIC), leverages the structure of captions to improve the generation quality and guide our representation design. Experimental results, including detailed ablation studies, on two large-scale publicly available datasets show that JoGANIC substantially outperforms state-of-the-art methods both on caption generation and named entity related metrics.
Image captioning is one of the most challenging tasks in AI, which aims to automatically generate textual sentences for an image. Recent methods for image captioning follow encoder-decoder framework that transforms the sequence of salient regions in an image into natural language descriptions. However, these models usually lack the comprehensive understanding of the contextual interactions reflected on various visual relationships between objects. In this paper, we explore explicit and implicit visual relationships to enrich region-level representations for image captioning. Explicitly, we build semantic graph over object pairs and exploit gated graph convolutional networks (Gated GCN) to selectively aggregate local neighbors information. Implicitly, we draw global interactions among the detected objects through region-based bidirectional encoder representations from transformers (Region BERT) without extra relational annotations. To evaluate the effectiveness and superiority of our proposed method, we conduct extensive experiments on Microsoft COCO benchmark and achieve remarkable improvements compared with strong baselines.
We propose an Auto-Parsing Network (APN) to discover and exploit the input datas hidden tree structures for improving the effectiveness of the Transformer-based vision-language systems. Specifically, we impose a Probabilistic Graphical Model (PGM) pa rameterized by the attention operations on each self-attention layer to incorporate sparse assumption. We use this PGM to softly segment an input sequence into a few clusters where each cluster can be treated as the parent of the inside entities. By stacking these PGM constrained self-attention layers, the clusters in a lower layer compose into a new sequence, and the PGM in a higher layer will further segment this sequence. Iteratively, a sparse tree can be implicitly parsed, and this trees hierarchical knowledge is incorporated into the transformed embeddings, which can be used for solving the target vision-language tasks. Specifically, we showcase that our APN can strengthen Transformer based networks in two major vision-language tasks: Captioning and Visual Question Answering. Also, a PGM probability-based parsing algorithm is developed by which we can discover what the hidden structure of input is during the inference.
114 - Dandan Guo , Ruiying Lu , Bo Chen 2021
Observing a set of images and their corresponding paragraph-captions, a challenging task is to learn how to produce a semantically coherent paragraph to describe the visual content of an image. Inspired by recent successes in integrating semantic top ics into this task, this paper develops a plug-and-play hierarchical-topic-guided image paragraph generation framework, which couples a visual extractor with a deep topic model to guide the learning of a language model. To capture the correlations between the image and text at multiple levels of abstraction and learn the semantic topics from images, we design a variational inference network to build the mapping from image features to textual captions. To guide the paragraph generation, the learned hierarchical topics and visual features are integrated into the language model, including Long Short-Term Memory (LSTM) and Transformer, and jointly optimized. Experiments on public dataset demonstrate that the proposed models, which are competitive with many state-of-the-art approaches in terms of standard evaluation metrics, can be used to both distill interpretable multi-layer topics and generate diverse and coherent captions.
Bias is a common problem in todays media, appearing frequently in text and in visual imagery. Users on social media websites such as Twitter need better methods for identifying bias. Additionally, activists --those who are motivated to effect change related to some topic, need better methods to identify and counteract bias that is contrary to their mission. With both of these use cases in mind, in this paper we propose a novel tool called UnbiasedCrowd that supports identification of, and action on bias in visual news media. In particular, it addresses the following key challenges (1) identification of bias; (2) aggregation and presentation of evidence to users; (3) enabling activists to inform the public of bias and take action by engaging people in conversation with bots. We describe a preliminary study on the Twitter platform that explores the impressions that activists had of our tool, and how people reacted and engaged with online bots that exposed visual bias. We conclude by discussing design and implication of our findings for creating future systems to identify and counteract the effects of news bias.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا