ترغب بنشر مسار تعليمي؟ اضغط هنا

Giant Huang-Rhys Factor for Electron Capture by the Iodine Interstitial in Perovskite Solar Cells

95   0   0.0 ( 0 )
 نشر من قبل Lucy Whalley
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Improvement in the optoelectronic performance of halide perovskite semiconductors requires the identification and suppression of non-radiative carrier trapping processes. The iodine interstitial has been established as a deep level defect, and implicated as an active recombination centre. We analyse the quantum mechanics of carrier trapping. Fast and irreversible electron capture by the neutral iodine interstitial is found. The effective Huang-Rhys factor exceeds 300, indicative of the strong electron-phonon coupling that is possible in soft semiconductors. The accepting phonon mode has a frequency of 53 cm$^{-1}$ and has an associated electron capture coefficient of 10$^{-10}$cm$^3$s$^{-1}$. The inverse participation ratio is used to quantify the localisation of phonon modes associated with the transition. We infer that suppression of octahedral rotations is an important factor to enhance defect tolerance.



قيم البحث

اقرأ أيضاً

Due to the photo-instability and hysteresis of TiO$_2$ electron transport layer (ETL) in perovskite solar cells (PSCs), novel electron transport materials are highly demanded. Here, we show ideal band alignment between La-doped BaSnO$_3$ (LBSO) and m ethyl ammonium (MA) lead iodide perovskite (MAPbI$_3$). The CH$_3$NH$_3$PbI$_3$/La$_x$Ba$_{(1-x)}$SnO$_3$ interface forms a stable all-perovskite heterostructure. The selective band alignment is manipulated with band gap renormalization by La-doping on the Ba site. LBSO shows high mobility, photo-stability, and structural stability, promising the next generation ETL materials.
Fundamental electronic processes such as charge-carrier transport and recombination play a critical role in determining the efficiency of hybrid perovskite solar cells. The presence of mobile ions complicates the development of a clear understanding of these processes as the ions may introduce exceptional phenomena such as hysteresis or giant dielectric constants. As a result, the electronic landscape, including its interaction with mobile ions, is difficult to access both experimentally and analytically. To address this challenge, we applied a series of small perturbation techniques including impedance spectroscopy (IS), intensity-modulated photocurrent spectroscopy (IMPS) and intensity-modulated photovoltage spectroscopy (IMVS) to planar $mathrm{MAPbI_3}$ perovskite solar cells. Our measurements indicate that both electronic as well as ionic responses can be observed in all three methods and assigned by literature comparison. The results reveal that the dominant charge-carrier loss mechanism is surface recombination by limitation of the quasi-Fermi level splitting. The interaction between mobile ions and the electronic charge carriers leads to a shift of the apparent diode ideality factor from 0.74 to 1.64 for increasing illumination intensity, despite the recombination mechanism remaining unchanged.
The hybrid perovskite CH3NH3PbI3 (MAPI) exhibits long minority-carrier lifetimes and diffusion lengths. We show that slow recombination originates from a spin-split indirect-gap. Large internal electric fields act on spin-orbit-coupled band extrema, shifting band-edges to inequivalent wavevectors, making the fundamental gap indirect. From a description of photoluminescence within the quasiparticle self-consistent GW (QSGW) approximation for MAPI, CdTe and GaAs, we predict carrier lifetime as a function of light intensity and temperature. At operating conditions we find radiative recombination in MAPI is reduced by a factor of more than 350 compared to direct gap behavior. The indirect gap is retained with dynamic disorder.
Solar cells based on organic-inorganic metal halide perovskites show efficiencies close to highly-optimized silicon solar cells. However, ion migration in the perovskite films leads to device degradation and impedes large scale commercial application s. We use transient ion-drift measurements to quantify activation energy, diffusion coefficient, and concentration of mobile ions in methylammonium lead triiodide (MAPbI3) perovskite solar cells, and find that their properties change close to the tetragonal-to-orthorhombic phase transition temperature. We identify three migrating ion species which we attribute to the migration of iodide (I-) and methylammonium (MA+). We find that the concentration of mobile MA+ ions is one order of magnitude higher than the one of mobile I- ions, and that the diffusion coefficient of mobile MA+ ions is three orders of magnitude lower than the one for mobile I- ions. We furthermore observe that the activation energy of mobile I- ions (0.29 eV) is highly reproducible for different devices, while the activation energy of mobile MA+ depends strongly on device fabrication. This quantification of mobile ions in MAPbI3 will lead to a better understanding of ion migration and its role in operation and degradation of perovskite solar cells.
Deposition of perovskite thin films by antisolvent engineering is one of the most common methods employed in perovskite photovoltaics research. Herein, we report on a general method that allows the fabrication of highly efficient perovskite solar cel ls by any antisolvent via the manipulation of the antisolvent application rate. Through a detailed structural, compositional and microstructural characterization of perovskite layers fabricated by 14 different antisolvents, we identify two key factors that influence the quality of the perovskite active layer: the solubility of the organic precursors in the antisolvent and its miscibility with the host solvent(s) of the perovskite precursor solution. Depending on these two factors, each antisolvent can be utilized to produce high performance devices reaching power conversion efficiencies (PCEs) that exceed 21%. Moreover, we demonstrate that by employing the optimal antisolvent application procedure, highly efficient solar cells can be fabricated from a broad range of precursor stoichiometries, with either a significant excess or deficiency of organic iodides.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا