ﻻ يوجد ملخص باللغة العربية
Improvement in the optoelectronic performance of halide perovskite semiconductors requires the identification and suppression of non-radiative carrier trapping processes. The iodine interstitial has been established as a deep level defect, and implicated as an active recombination centre. We analyse the quantum mechanics of carrier trapping. Fast and irreversible electron capture by the neutral iodine interstitial is found. The effective Huang-Rhys factor exceeds 300, indicative of the strong electron-phonon coupling that is possible in soft semiconductors. The accepting phonon mode has a frequency of 53 cm$^{-1}$ and has an associated electron capture coefficient of 10$^{-10}$cm$^3$s$^{-1}$. The inverse participation ratio is used to quantify the localisation of phonon modes associated with the transition. We infer that suppression of octahedral rotations is an important factor to enhance defect tolerance.
Due to the photo-instability and hysteresis of TiO$_2$ electron transport layer (ETL) in perovskite solar cells (PSCs), novel electron transport materials are highly demanded. Here, we show ideal band alignment between La-doped BaSnO$_3$ (LBSO) and m
Fundamental electronic processes such as charge-carrier transport and recombination play a critical role in determining the efficiency of hybrid perovskite solar cells. The presence of mobile ions complicates the development of a clear understanding
The hybrid perovskite CH3NH3PbI3 (MAPI) exhibits long minority-carrier lifetimes and diffusion lengths. We show that slow recombination originates from a spin-split indirect-gap. Large internal electric fields act on spin-orbit-coupled band extrema,
Solar cells based on organic-inorganic metal halide perovskites show efficiencies close to highly-optimized silicon solar cells. However, ion migration in the perovskite films leads to device degradation and impedes large scale commercial application
Deposition of perovskite thin films by antisolvent engineering is one of the most common methods employed in perovskite photovoltaics research. Herein, we report on a general method that allows the fabrication of highly efficient perovskite solar cel