ﻻ يوجد ملخص باللغة العربية
Because all stars contribute to its gravitational potential, stellar clusters amplify perturbations collectively. In the limit of small fluctuations, this is described through linear response theory, via the so-called response matrix. While the evaluation of this matrix is somewhat straightforward for unstable modes (i.e. with a positive growth rate), it requires a careful analytic continuation for damped modes (i.e. with a negative growth rate). We present a generic method to perform such a calculation in spherically symmetric stellar clusters. When applied to an isotropic isochrone cluster, we recover the presence of a low-frequency weakly damped $ell = 1$ mode. We finally use a set of direct $N$-body simulations to test explicitly this prediction through the statistics of the correlated random walk undergone by a clusters density centre.
This research was stimulated by the recent studies of damping solutions in dynamically stable spherical stellar systems. Using the simplest model of the homogeneous stellar medium, we discuss nontrivial features of stellar systems. Taking them into a
Rotation is ubiquitous in the Universe, and recent kinematic surveys have shown that early type galaxies and globular clusters are no exception. Yet the linear response of spheroidal rotating stellar systems has seldom been studied. This paper takes
Linear theory provides a reasonable description of the velocity correlations of biased tracers both perpendicular and parallel to the line of separation, provided one accounts for the fact that the measurement is almost always made using pair-weighte
We present a study of the optical response of compact and hollow icosahedral clusters containing up to 868 silver atoms by means of time-dependent density functional theory. We have studied the dependence on size and morphology of both the sharp plas
We investigate the triggering of star formation and the formation of stellar clusters in molecular clouds that form as the ISM passes through spiral shocks. The spiral shock compresses gas into $sim$100 pc long main star formation ridge, where cluste