ﻻ يوجد ملخص باللغة العربية
This research was stimulated by the recent studies of damping solutions in dynamically stable spherical stellar systems. Using the simplest model of the homogeneous stellar medium, we discuss nontrivial features of stellar systems. Taking them into account will make it possible to correctly interpret the results obtained earlier and will help to set up decisive numerical experiments in the future. In particular, we compare the initial value problem versus the eigenvalue problem. It turns out that in the unstable regime, the Landau-damped waves can be represented as a superposition of van Kampen modes {it plus} a discrete damped mode, usually ignored in the stability study. This mode is a solution complex conjugate to the unstable Jeans mode. In contrast, the Landau-damped waves are not genuine modes: in modes, eigenfunctions depend on time as $exp (-{rm i} omega t)$, while the waves do not have eigenfunctions on the real $v$-axis at all. However, `eigenfunctions on the complex $v$-contours do exist. Deviations from the Landau damping are common and can be due to singularities or cut-off of the initial perturbation above some fixed value in the velocity space.
Because all stars contribute to its gravitational potential, stellar clusters amplify perturbations collectively. In the limit of small fluctuations, this is described through linear response theory, via the so-called response matrix. While the evalu
We consider the questions of whether the damped Lyman-alpha (DLA) and sub-DLA absorbers in quasar spectra differ intrinsically in metallicity, and whether they could arise in galaxies of different masses. Using the recent measurements of the robust m
The XQ-100 survey has provided high signal-noise spectra of 100 redshift 3-4.5 quasars with the X-Shooter spectrograph. The metal abundances for 13 elements in the 41 damped Lyman alpha systems (DLAs) identified in the XQ-100 sample are presented, an
Nitrogen is thought to have both primary and secondary origins depending on whether the seed carbon and oxygen are produced by the star itself (primary) or already present in the interstellar medium (secondary) from which star forms. DLA and sub-DLA
A comprehensive input-output theory is developed for Fermionic input fields. Quantum stochastic differential equations are developed in both the Ito and Stratonovich forms. The major technical issue is the development of a formalism which takes accou