ﻻ يوجد ملخص باللغة العربية
Gun violence is a severe problem in the world, particularly in the United States. Deep learning methods have been studied to detect guns in surveillance video cameras or smart IP cameras and to send a real-time alert to security personals. One problem for the development of gun detection algorithms is the lack of large public datasets. In this work, we first publish a dataset with 51K annotated gun images for gun detection and other 51K cropped gun chip images for gun classification we collect from a few different sources. To our knowledge, this is the largest dataset for the study of gun detection. This dataset can be downloaded at www.linksprite.com/gun-detection-datasets. We present a gun detection system using a smart IP camera as an embedded edge device, and a cloud server as a manager for device, data, alert, and to further reduce the false positive rate. We study to find solutions for gun detection in an embedded device, and for gun classification on the edge device and the cloud server. This edge/cloud framework makes the deployment of gun detection in the real world possible.
Nowadays, billions of videos are online ready to be viewed and shared. Among an enormous volume of videos, some popular ones are widely viewed by online users while the majority attract little attention. Furthermore, within each video, different segm
Video super-resolution (VSR) technology excels in reconstructing low-quality video, avoiding unpleasant blur effect caused by interpolation-based algorithms. However, vast computation complexity and memory occupation hampers the edge of deplorability
Interlacing is a widely used technique, for television broadcast and video recording, to double the perceived frame rate without increasing the bandwidth. But it presents annoying visual artifacts, such as flickering and silhouette serration, during
In this paper, we propose a Distributed Intelligent Video Surveillance (DIVS) system using Deep Learning (DL) algorithms and deploy it in an edge computing environment. We establish a multi-layer edge computing architecture and a distributed DL train
When producing a model to object detection in a specific context, the first obstacle is to have a dataset labeling the desired classes. In RoboCup, some leagues already have more than one dataset to train and evaluate a model. However, in the Small S