ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a Distributed Intelligent Video Surveillance (DIVS) system using Deep Learning (DL) algorithms and deploy it in an edge computing environment. We establish a multi-layer edge computing architecture and a distributed DL training model for the DIVS system. The DIVS system can migrate computing workloads from the network center to network edges to reduce huge network communication overhead and provide low-latency and accurate video analysis solutions. We implement the proposed DIVS system and address the problems of parallel training, model synchronization, and workload balancing. Task-level parallel and model-level parallel training methods are proposed to further accelerate the video analysis process. In addition, we propose a model parameter updating method to achieve model synchronization of the global DL model in a distributed EC environment. Moreover, a dynamic data migration approach is proposed to address the imbalance of workload and computational power of edge nodes. Experimental results showed that the EC architecture can provide elastic and scalable computing power, and the proposed DIVS system can efficiently handle video surveillance and analysis tasks.
There has been much interest in deploying deep learning algorithms on low-powered devices, including smartphones, drones, and medical sensors. However, full-scale deep neural networks are often too resource-intensive in terms of energy and storage. A
Mobile edge computing (MEC) is a promising technology to support mission-critical vehicular applications, such as intelligent path planning and safety applications. In this paper, a collaborative edge computing framework is developed to reduce the co
Gun violence is a severe problem in the world, particularly in the United States. Deep learning methods have been studied to detect guns in surveillance video cameras or smart IP cameras and to send a real-time alert to security personals. One proble
The ability to predict, anticipate and reason about future outcomes is a key component of intelligent decision-making systems. In light of the success of deep learning in computer vision, deep-learning-based video prediction emerged as a promising re
Anomaly detection in videos is a problem that has been studied for more than a decade. This area has piqued the interest of researchers due to its wide applicability. Because of this, there has been a wide array of approaches that have been proposed