ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a subspace representation learning (SRL) framework to tackle few-shot image classification tasks. It exploits a subspace in local CNN feature space to represent an image, and measures the similarity between two images according to a weighted subspace distance (WSD). When K images are available for each class, we develop two types of template subspaces to aggregate K-shot information: the prototypical subspace (PS) and the discriminative subspace (DS). Based on the SRL framework, we extend metric learning based techniques from vector to subspace representation. While most previous works adopted global vector representation, using subspace representation can effectively preserve the spatial structure, and diversity within an image. We demonstrate the effectiveness of the SRL framework on three public benchmark datasets: MiniImageNet, TieredImageNet and Caltech-UCSD Birds-200-2011 (CUB), and the experimental results illustrate competitive/superior performance of our method compared to the previous state-of-the-art.
Few-shot Learning has been studied to mimic human visual capabilities and learn effective models without the need of exhaustive human annotation. Even though the idea of meta-learning for adaptation has dominated the few-shot learning methods, how to
Few-shot image classification aims at recognizing unseen categories with a small number of labeled training data. Recent metric-based frameworks tend to represent a support class by a fixed prototype (e.g., the mean of the support category) and make
Few-shot image classification is a challenging problem which aims to achieve the human level of recognition based only on a small number of images. Deep learning algorithms such as meta-learning, transfer learning, and metric learning have been emplo
Few-shot image classification learns to recognize new categories from limited labelled data. Metric learning based approaches have been widely investigated, where a query sample is classified by finding the nearest prototype from the support set base
Deep learning and convolutional neural networks (CNNs) have made progress in polarimetric synthetic aperture radar (PolSAR) image classification over the past few years. However, a crucial issue has not been addressed, i.e., the requirement of CNNs f