ﻻ يوجد ملخص باللغة العربية
In this paper, a numerical study on the melting behavior of phase change material (PCM) with gradient porous media has been carried out at the pore scales. In order to solve the governing equations, a pore-scale lattice Boltzmann method with the double distribution functions is used, in which a volumetric LB scheme is employed to handle the boundary. The Monte Carlo random sampling is adopted to generate a microstructure of two-dimensional gradient foam metal which are then used to simulate the solid-liquid phase transition in the cavity. The effect of several factors, such as gradient porosity structure, gradient direction, Rayleigh number and particle diameters on the liquid fraction of PCM are systematically investigated. It is observed that the presence of gradient media affect significantly the melting rate and shortens full melting time compared to that for constant porosity by enhancing natural convection. The melting time of positive and negative gradients will change with Rayleigh number, and there is a critical value for Rayleigh number. Specifically, when Rayleigh number is below the critical value, the positive gradient is more advantageous, and when Rayleigh number exceeds the critical value, the negative gradient is more advantageous. Moreover, smaller particle diameters would lead to lower permeability and larger internal surfaces for heat transfer.
Natural convection in porous media is a fundamental process for the long-term storage of CO2 in deep saline aquifers. Typically, details of mass transfer in porous media are inferred from the numerical solution of the volume-averaged Darcy-Oberbeck-B
We study the transport of inertial particles in water flow in porous media. Our interest lies in understanding the accumulation of particles including the possibility of clogging. We propose that accumulation can be a result of hydrodynamic effects:
In a range of physical systems, the first instability in Rayleigh-Bernard convection between nearly thermally insulating horizontal plates is large scale. This holds for thermal convection of fluids saturating porous media. Large-scale thermal convec
We investigate the elastoviscoplastic flow through porous media by numerical simulations. We solve the Navier-Stokes equations combined with the elastoviscoplastic model proposed by Saramito for the stress tensor evolution. In this model, the materia
Immiscible fluid-fluid displacement in porous media is of great importance in many engineering applications, such as enhanced oil recovery, agricultural irrigation, and geologic CO2 storage. Fingering phenomena, induced by the interface instability,