ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of Pore-scale on the Macroscopic Properties of Natural Convection in Porous Media

312   0   0.0 ( 0 )
 نشر من قبل Yan Jin
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Natural convection in porous media is a fundamental process for the long-term storage of CO2 in deep saline aquifers. Typically, details of mass transfer in porous media are inferred from the numerical solution of the volume-averaged Darcy-Oberbeck-Boussinesq (DOB) equations, even though these equations do not account for the microscopic properties of a porous medium. According to the DOB equations, natural convection in a porous medium is uniquely determined by the Rayleigh number. However, in contrast with experiments, DOB simulations yield a linear scaling of the Sherwood number with the Rayleigh number (Ra) for high values of Ra (Ra>>1,300). Here, we perform Direct Numerical Simulations (DNS), fully resolving the flow field within the pores. We show that the boundary layer thickness is determined by the pore size instead of the Rayleigh number, as previously assumed. The mega- and proto- plume sizes increase with the pore size. Our DNS results exhibit a nonlinear scaling of the Sherwood number at high porosity, and for the same Rayleigh number, higher Sherwood numbers are predicted by DNS at lower porosities. It can be concluded that the scaling of the Sherwood number depends on the porosity and the pore-scale parameters, which is consistent with experimental studies.



قيم البحث

اقرأ أيضاً

88 - Jiangxu Huang , Kun He , Lei Wang 2021
In this paper, a numerical study on the melting behavior of phase change material (PCM) with gradient porous media has been carried out at the pore scales. In order to solve the governing equations, a pore-scale lattice Boltzmann method with the doub le distribution functions is used, in which a volumetric LB scheme is employed to handle the boundary. The Monte Carlo random sampling is adopted to generate a microstructure of two-dimensional gradient foam metal which are then used to simulate the solid-liquid phase transition in the cavity. The effect of several factors, such as gradient porosity structure, gradient direction, Rayleigh number and particle diameters on the liquid fraction of PCM are systematically investigated. It is observed that the presence of gradient media affect significantly the melting rate and shortens full melting time compared to that for constant porosity by enhancing natural convection. The melting time of positive and negative gradients will change with Rayleigh number, and there is a critical value for Rayleigh number. Specifically, when Rayleigh number is below the critical value, the positive gradient is more advantageous, and when Rayleigh number exceeds the critical value, the negative gradient is more advantageous. Moreover, smaller particle diameters would lead to lower permeability and larger internal surfaces for heat transfer.
We study the transport of inertial particles in water flow in porous media. Our interest lies in understanding the accumulation of particles including the possibility of clogging. We propose that accumulation can be a result of hydrodynamic effects: the tortuous paths of the porous medium generate regions of dominating strain/vorticity, which favour the accumulation/dispersion of the inertial particles. Numerical simulations show that essentially two accumulation regimes are identified: for low and for high flow velocities. When particles accumulate in high-velocity regions, at the entrance of a pore throat, a clog is formed. The formation of a clog significantly modifies the flow, as the partial blockage of the pore causes a local redistribution of pressure. This redistribution can divert the upstream water flow into neighbouring pores. Moreover, we show that accumulation in high velocity regions occurs in heterogeneous media, but not in homogeneous media, where we refer to homogeneity with respect to the distribution of the pore throat diameters.
In a range of physical systems, the first instability in Rayleigh-Bernard convection between nearly thermally insulating horizontal plates is large scale. This holds for thermal convection of fluids saturating porous media. Large-scale thermal convec tion in a horizontal layer is governed by remarkably similar equations both in the presence of a porous matrix and without it, with only one additional term for the latter case, which, however, vanishes under certain conditions (e.g., two-dimensional flows or infinite Prandtl number). We provide a rigorous derivation of long-wavelength equations for a porous layer with inhomogeneous heating and possible pumping.
We investigate the elastoviscoplastic flow through porous media by numerical simulations. We solve the Navier-Stokes equations combined with the elastoviscoplastic model proposed by Saramito for the stress tensor evolution. In this model, the materia l behaves as a viscoelastic solid when unyielded, and as a viscoelastic Oldroyd-B fluid for stresses higher than the yield stress. The porous media is made of a symmetric array of cylinders, and we solve the flow in one periodic cell. We find that the solution is time-dependent even at low Reynolds numbers as we observe oscillations in time of the unyielded region especially at high Bingham numbers. The volume of the unyielded region slightly decreases with the Reynolds number and strongly increases with the Bingham number; up to 70% of the total volume is unyielded for the highest Bingham numbers considered here. The flow is mainly shear dominated in the yielded region, while shear and elongational flow are equally distributed in the unyielded region. We compute the relation between the pressure drop and the flow rate in the porous medium and present an empirical closure as function of the Bingham and Reynolds numbers. The apparent permeability, normalized with the case of Newtonian fluids, is shown to be greater than 1 at low Bingham numbers, corresponding to lower pressure drops due to the flow elasticity, and smaller than 1 for high Bingham numbers, indicating larger dissipation in the flow owing to the presence of the yielded regions. Finally we investigate the effect of the Weissenberg number on the distribution of the unyielded regions and on the pressure gradient.
We investigate the chemical dissolution of porous media using a network model in which the system is represented as a series of interconnected pipes with the diameter of each segment increasing in proportion to the local reactant consumption. Moreove r, the topology of the network is allowed to change dynamically during the simulation: as the diameters of the eroding pores become comparable with the interpore distances, the pores are joined together thus changing the interconnections within the network. With this model, we investigate different growth regimes in an evolving porous medium, identifying the mechanisms responsible for the emergence of specific patterns. We consider both the random and regular network and study the effect of the network geometry on the patterns. Finally, we consider practically important problem of finding an optimum flow rate that gives a maximum increase in permeability for a given amount of reactant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا