ﻻ يوجد ملخص باللغة العربية
In an edge modification problem, we are asked to modify at most $k$ edges to a given graph to make the graph satisfy a certain property. Depending on the operations allowed, we have the completion problems and the edge deletion problems. A great amount of efforts have been devoted to understanding the kernelization complexity of these problems. We revisit several well-studied edge modification problems, and develop improved kernels for them: begin{itemize} item a $2 k$-vertex kernel for the cluster edge deletion problem, item a $3 k^2$-vertex kernel for the trivially perfect completion problem, item a $5 k^{1.5}$-vertex kernel for the split completion problem and the split edge deletion problem, and item a $5 k^{1.5}$-vertex kernel for the pseudo-split completion problem and the pseudo-split edge deletion problem. end{itemize} Moreover, our kernels for split completion and pseudo-split completion have only $O(k^{2.5})$ edges. Our results also include a $2 k$-vertex kernel for the strong triadic closure problem, which is related to cluster edge deletion.
Let $H$ be a fixed graph. Given a graph $G$ and an integer $k$, the $H$-free edge modification problem asks whether it is possible to modify at most $k$ edges in $G$ to make it $H$-free. Sandeep and Sivadasan (IPEC 2015) asks whether the paw-free com
In a (parameterized) graph edge modification problem, we are given a graph $G$, an integer $k$ and a (usually well-structured) class of graphs $mathcal{G}$, and ask whether it is possible to transform $G$ into a graph $G in mathcal{G}$ by adding and/
We give new approximation algorithms for the submodular joint replenishment problem and the inventory routing problem, using an iterative rounding approach. In both problems, we are given a set of $N$ items and a discrete time horizon of $T$ days in
In the Metric Capacitated Covering (MCC) problem, given a set of balls $mathcal{B}$ in a metric space $P$ with metric $d$ and a capacity parameter $U$, the goal is to find a minimum sized subset $mathcal{B}subseteq mathcal{B}$ and an assignment of th
A graph is said to be a Konig graph if the size of its maximum matching is equal to the size of its minimum vertex cover. The Konig Edge Deletion problem asks if in a given graph there exists a set of at most k edges whose deletion results in a Konig