ﻻ يوجد ملخص باللغة العربية
Let $H$ be a fixed graph. Given a graph $G$ and an integer $k$, the $H$-free edge modification problem asks whether it is possible to modify at most $k$ edges in $G$ to make it $H$-free. Sandeep and Sivadasan (IPEC 2015) asks whether the paw-free completion problem and the paw-free edge deletion problem admit polynomial kernels. We answer both questions affirmatively by presenting, respectively, $O(k)$-vertex and $O(k^4)$-vertex kernels for them. This is part of an ongoing program that aims at understanding compressibility of $H$-free edge modification problems.
In an edge modification problem, we are asked to modify at most $k$ edges to a given graph to make the graph satisfy a certain property. Depending on the operations allowed, we have the completion problems and the edge deletion problems. A great amou
In a (parameterized) graph edge modification problem, we are given a graph $G$, an integer $k$ and a (usually well-structured) class of graphs $mathcal{G}$, and ask whether it is possible to transform $G$ into a graph $G in mathcal{G}$ by adding and/
Kernel methods are fundamental in machine learning, and faster algorithms for kernel approximation provide direct speedups for many core tasks in machine learning. The polynomial kernel is especially important as other kernels can often be approximat
We study the existence of polynomial kernels, for parameterized problems without a polynomial kernel on general graphs, when restricted to graphs of bounded twin-width. Our main result is that a polynomial kernel for $k$-Dominating Set on graphs of t
Kernel methods are fundamental tools in machine learning that allow detection of non-linear dependencies between data without explicitly constructing feature vectors in high dimensional spaces. A major disadvantage of kernel methods is their poor sca