ﻻ يوجد ملخص باللغة العربية
In this work, we propose a Cross-view Contrastive Learning framework for unsupervised 3D skeleton-based action Representation (CrosSCLR), by leveraging multi-view complementary supervision signal. CrosSCLR consists of both single-view contrastive learning (SkeletonCLR) and cross-view consistent knowledge mining (CVC-KM) modules, integrated in a collaborative learning manner. It is noted that CVC-KM works in such a way that high-confidence positive/negative samples and their distributions are exchanged among views according to their embedding similarity, ensuring cross-view consistency in terms of contrastive context, i.e., similar distributions. Extensive experiments show that CrosSCLR achieves remarkable action recognition results on NTU-60 and NTU-120 datasets under unsupervised settings, with observed higher-quality action representations. Our code is available at https://github.com/LinguoLi/CrosSCLR.
We present an approach to recover absolute 3D human poses from multi-view images by incorporating multi-view geometric priors in our model. It consists of two separate steps: (1) estimating the 2D poses in multi-view images and (2) recovering the 3D
Although monocular 3D human pose estimation methods have made significant progress, its far from being solved due to the inherent depth ambiguity. Instead, exploiting multi-view information is a practical way to achieve absolute 3D human pose estimat
We learn a self-supervised, single-view 3D reconstruction model that predicts the 3D mesh shape, texture and camera pose of a target object with a collection of 2D images and silhouettes. The proposed method does not necessitate 3D supervision, manua
In this paper, we introduce a novel unsupervised domain adaptation technique for the task of 3D keypoint prediction from a single depth scan or image. Our key idea is to utilize the fact that predictions from different views of the same or similar ob
We introduce a weakly supervised method for representation learning based on aligning temporal sequences (e.g., videos) of the same process (e.g., human action). The main idea is to use the global temporal ordering of latent correspondences across se