ﻻ يوجد ملخص باللغة العربية
In this paper, we introduce a novel unsupervised domain adaptation technique for the task of 3D keypoint prediction from a single depth scan or image. Our key idea is to utilize the fact that predictions from different views of the same or similar objects should be consistent with each other. Such view consistency can provide effective regularization for keypoint prediction on unlabeled instances. In addition, we introduce a geometric alignment term to regularize predictions in the target domain. The resulting loss function can be effectively optimized via alternating minimization. We demonstrate the effectiveness of our approach on real datasets and present experimental results showing that our approach is superior to state-of-the-art general-purpose domain adaptation techniques.
Domain adaptation (DA) aims at transferring knowledge from a labeled source domain to an unlabeled target domain. Though many DA theories and algorithms have been proposed, most of them are tailored into classification settings and may fail in regres
Accurate real depth annotations are difficult to acquire, needing the use of special devices such as a LiDAR sensor. Self-supervised methods try to overcome this problem by processing video or stereo sequences, which may not always be available. Inst
Many existing approaches for unsupervised domain adaptation (UDA) focus on adapting under only data distribution shift and offer limited success under additional cross-domain label distribution shift. Recent work based on self-training using target p
Recent advances in unsupervised domain adaptation mainly focus on learning shared representations by global distribution alignment without considering class information across domains. The neglect of class information, however, may lead to partial al
The cardiothoracic ratio (CTR), a clinical metric of heart size in chest X-rays (CXRs), is a key indicator of cardiomegaly. Manual measurement of CTR is time-consuming and can be affected by human subjectivity, making it desirable to design computer-