ﻻ يوجد ملخص باللغة العربية
We present an effective field theory describing the relevant interactions of the Standard Model with an electrically neutral particle that can account for the dark matter in the Universe. The possible mediators of these interactions are assumed to be heavy. The dark matter candidates that we consider have spin 0, 1/2 or 1, belong to an electroweak multiplet with arbitrary isospin and hypercharge and their stability at cosmological scales is guaranteed by imposing a $mathbb{Z}_2$ symmetry. We present the most general framework for describing the interaction of the dark matter with standard particles, and construct a general non-redundant basis of the gauge-invariant operators up to dimension six. The basis includes multiplets with non-vanishing hypercharge, which can also be viable DM candidates. We give two examples illustrating the phenomenological use of such a general effective framework. First, we consider the case of a scalar singlet, provide convenient semi-analytical expressions for the relevant dark matter observables, use present experimental data to set constraints on the Wilson coefficients of the operators, and show how the interplay of different operators can open new allowed windows in the parameter space of the model. Then we study the case of a lepton isodoublet, which involves co-annihilation processes, and we discuss the impact of the operators on the particle mass splitting and direct detection cross sections. These examples highlight the importance of the contribution of the various non-renormalizable operators, which can even dominate over the gauge interactions in certain cases.
We revisit thermal Majorana dark matter from the viewpoint of minimal effective field theory. In this framework, analytic results for dark matter annihilation into standard model particles are derived. The dark matter parameter space subject to the l
Les Houches 2021 lectures on dark matter effective field theory (short course). The aim of these two lectures is to calculate the DM-nucleus cross section for a simple example, and then generalize to the treatment of general effective interactions of
A description of the Higgs portal-vector dark matter interpretation of the spin-independent dark-matter nucleon elastic scattering cross section using the invisible Higgs decay width measured at the LHC is presented. The usage of Effective Field Theo
We present the full basis of effective operators relevant for dark matter direct detection, up to and including operators of mass dimension seven. We treat the cases where dark matter is either a Dirac fermion, a Majorana fermion, a complex scalar, o
We reanalyze the effective field theory approach for the scenario in which the particles that account for the dark matter (DM) in the universe are vector states that interact only or mainly through the Standard Model-like Higgs boson observed at the