ﻻ يوجد ملخص باللغة العربية
We present the full basis of effective operators relevant for dark matter direct detection, up to and including operators of mass dimension seven. We treat the cases where dark matter is either a Dirac fermion, a Majorana fermion, a complex scalar, or a real scalar, allowing for dark matter to furnish a general representation of the electroweak gauge group. We describe the algorithmic procedure used to obtain the minimal set of effective operators and provide the tree-level matching conditions onto the effective theory valid below the electroweak scale.
We revisit the effective field theory of the standard model that is extended with sterile neutrinos, $N$. We examine the basis of complete and independent effective operators involving $N$ up to mass dimension seven (dim-7). By employing equations of
We examine the consequences of the effective field theory (EFT) of dark matter-nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are present
We present an effective field theory describing the relevant interactions of the Standard Model with an electrically neutral particle that can account for the dark matter in the Universe. The possible mediators of these interactions are assumed to be
We revisit thermal Majorana dark matter from the viewpoint of minimal effective field theory. In this framework, analytic results for dark matter annihilation into standard model particles are derived. The dark matter parameter space subject to the l
Les Houches 2021 lectures on dark matter effective field theory (short course). The aim of these two lectures is to calculate the DM-nucleus cross section for a simple example, and then generalize to the treatment of general effective interactions of