ترغب بنشر مسار تعليمي؟ اضغط هنا

On the analyticity of electronic reduced densities for molecules

71   0   0.0 ( 0 )
 نشر من قبل Thierry Jecko
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider an electronic bound state of the usual, non-relativistic, molecular Hamiltonian with Coulomb interactions and fixed nuclei. Away from appropriate collisions, we prove the real analyticity of all the reduced densities and density matrices, that are associated to this bound state. We provide a similar result for the associated reduced current density.



قيم البحث

اقرأ أيضاً

335 - Remi Carles 2008
We present a general algorithm to show that a scattering operator associated to a semilinear dispersive equation is real analytic, and to compute the coefficients of its Taylor series at any point. We illustrate this method in the case of the Schrodi nger equation with power-like nonlinearity or with Hartree type nonlinearity, and in the case of the wave and Klein-Gordon equations with power nonlinearity. Finally, we discuss the link of this approach with inverse scattering, and with complete integrability.
105 - Yvon Maday , Carlo Marcati 2020
We prove analytic-type estimates in weighted Sobolev spaces on the eigenfunctions of a class of elliptic and nonlinear eigenvalue problems with singular potentials, which includes the Hartree-Fock equations. Going beyond classical results on the anal yticity of the wavefunctions away from the nuclei, we prove weighted estimates locally at each singular point, with precise control of the derivatives of all orders. Our estimates have far-reaching consequences for the approximation of the eigenfunctions of the problems considered, and they can be used to prove a priori estimates on the numerical solution of such eigenvalue problems.
51 - Pietro Menotti 2020
We consider the problem of the real analytic dependence of the accessory parameters of Liouville theory on the moduli of the problem, for general elliptic singularities. We give a simplified proof of the almost everywhere real analyticity in the case of a single accessory parameter as it occurs e.g. in the sphere topology with four sources or for the torus topology with a single source by using only the general analyticity properties of the solution of the auxiliary equation. We deal then the case of two accessory parameters. We use the obtained result for a single accessory parameter to derive rigorous properties of the projection of the problem on lower dimensional planes. We derive the real analyticity result for two accessory parameters under an assumption of irreducibility.
In this article we prove the global existence of weak solutions for a diffuse interface model in a bounded domain (both in 2D and 3D) involving incompressible magnetic fluids with unmatched densities. The model couples the incompressible Navier-Stoke s equations, gradient flow of the magnetization vector and the Cahn-Hilliard dynamics describing the partial mixing of two fluids. The density of the mixture depends on an order parameter and the modelling, specifically the density dependence, is inspired from Abels, Garcke and Gr{u}n 2011.
We establish an equidistribution result for Ruelle resonant states on compact locally symmetric spaces of rank one. More precisely, we prove that among the first band Ruelle resonances there is a density one subsequence such that the respective produ cts of resonant and co-resonant states converge weakly to the Liouville measure. We prove this result by establishing an explicit quantum-classical correspondence between eigenspaces of the scalar Laplacian and the resonant states of the first band of Ruelle resonances which also leads to a new description of Patterson-Sullivan distributions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا