ﻻ يوجد ملخص باللغة العربية
We prove analytic-type estimates in weighted Sobolev spaces on the eigenfunctions of a class of elliptic and nonlinear eigenvalue problems with singular potentials, which includes the Hartree-Fock equations. Going beyond classical results on the analyticity of the wavefunctions away from the nuclei, we prove weighted estimates locally at each singular point, with precise control of the derivatives of all orders. Our estimates have far-reaching consequences for the approximation of the eigenfunctions of the problems considered, and they can be used to prove a priori estimates on the numerical solution of such eigenvalue problems.
We present a general algorithm to show that a scattering operator associated to a semilinear dispersive equation is real analytic, and to compute the coefficients of its Taylor series at any point. We illustrate this method in the case of the Schrodi
We consider an electronic bound state of the usual, non-relativistic, molecular Hamiltonian with Coulomb interactions and fixed nuclei. Away from appropriate collisions, we prove the real analyticity of all the reduced densities and density matrices,
In this paper, we consider the transmission eigenvalue problem associated with a general conductive transmission condition and study the geometric structures of the transmission eigenfunctions. We prove that under a mild regularity condition in terms
We justify WKB analysis for Hartree equation in space dimension at least three, in a regime which is supercritical as far as semiclassical analysis is concerned. The main technical remark is that the nonlinear Hartree term can be considered as a semi
Consider the Dirichlet-Laplacian in $Omega:= (0,L)times (0,H)$ and choose another open set $omegasubset Omega$. The estimate $0<C_{omega}leq R_{omega}(u):=frac{Vert uVert^{2}_{L^{2}(omega)}}{Vert uVert^{2}_{L^{2}(Omega)}}leq frac{vol(omega)}{vol(omeg