ﻻ يوجد ملخص باللغة العربية
The aim of this paper is to derive macroscopic equations for processes on large co-evolving networks, examples being opinion polarization with the emergence of filter bubbles or other social processes such as norm development. This leads to processes on graphs (or networks), where both the states of particles in nodes as well as the weights between them are updated in time. In our derivation we follow the basic paradigm of statistical mechanics: We start from paradigmatic microscopic models and derive a Liouville-type equation in a high-dimensional space including not only the node states in the network (corresponding to positions in mechanics), but also the edge weights between them. We then derive a natural (finite) marginal hierarchy and pass to an infinite limit. We will discuss the closure problem for this hierarchy and see that a simple mean-field solution can only arise if the weight distributions between nodes of equal states are concentrated. In a more interesting general case we propose a suitable closure at the level of a two-particle distribution (including the weight between them) and discuss some properties of the arising kinetic equations. Moreover, we highlight some structure-preserving properties of this closure and discuss its analysis in a minimal model. We discuss the application of our theory to some agent-based models in literature and discuss some open mathematical issues.
We describe a functional framework suitable to the analysis of the Cahn-Hilliard equation on an evolving surface whose evolution is assumed to be given textit{a priori}. The model is derived from balance laws for an order parameter with an associated
The exploration of epidemic dynamics on dynamically evolving (adaptive) networks poses nontrivial challenges to the modeler, such as the determination of a small number of informative statistics of the detailed network state (that is, a few good obse
This paper is devoted to diffusion limits of linear Boltzmann equations. When the equilibrium distribution function is Maxwellian distribution, it is well known that for an appropriate time scale, the small mean free path limit gives rise to a diffus
Complex networks play an important role in human society and in nature. Stochastic multistate processes provide a powerful framework to model a variety of emerging phenomena such as the dynamics of an epidemic or the spreading of information on compl
The aim of this paper is to study the derivation of appropriate meso- and macroscopic models for interactions as appearing in social processes. There are two main characteristics the models take into account, namely a network structure of interaction