ترغب بنشر مسار تعليمي؟ اضغط هنا

ZePHyR: Zero-shot Pose Hypothesis Rating

59   0   0.0 ( 0 )
 نشر من قبل Qiao Gu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Pose estimation is a basic module in many robot manipulation pipelines. Estimating the pose of objects in the environment can be useful for grasping, motion planning, or manipulation. However, current state-of-the-art methods for pose estimation either rely on large annotated training sets or simulated data. Further, the long training times for these methods prohibit quick interaction with novel objects. To address these issues, we introduce a novel method for zero-shot object pose estimation in clutter. Our approach uses a hypothesis generation and scoring framework, with a focus on learning a scoring function that generalizes to objects not used for training. We achieve zero-shot generalization by rating hypotheses as a function of unordered point differences. We evaluate our method on challenging datasets with both textured and untextured objects in cluttered scenes and demonstrate that our method significantly outperforms previous methods on this task. We also demonstrate how our system can be used by quickly scanning and building a model of a novel object, which can immediately be used by our method for pose estimation. Our work allows users to estimate the pose of novel objects without requiring any retraining. Additional information can be found on our website https://bokorn.github.io/zephyr/



قيم البحث

اقرأ أيضاً

We study the problem of aligning two sets of 3D geometric primitives given known correspondences. Our first contribution is to show that this primitive alignment framework unifies five perception problems including point cloud registration, primitive (mesh) registration, category-level 3D registration, absolution pose estimation (APE), and category-level APE. Our second contribution is to propose DynAMical Pose estimation (DAMP), the first general and practical algorithm to solve primitive alignment problem by simulating rigid body dynamics arising from virtual springs and damping, where the springs span the shortest distances between corresponding primitives. We evaluate DAMP in simulated and real datasets across all five problems, and demonstrate (i) DAMP always converges to the globally optimal solution in the first three problems with 3D-3D correspondences; (ii) although DAMP sometimes converges to suboptimal solutions in the last two problems with 2D-3D correspondences, using a scheme for escaping local minima, DAMP always succeeds. Our third contribution is to demystify the surprising empirical performance of DAMP and formally prove a global convergence result in the case of point cloud registration by charactering local stability of the equilibrium points of the underlying dynamical system.
Semantic segmentation models are limited in their ability to scale to large numbers of object classes. In this paper, we introduce the new task of zero-shot semantic segmentation: learning pixel-wise classifiers for never-seen object categories with zero training examples. To this end, we present a novel architecture, ZS3Net, combining a deep visual segmentation model with an approach to generate visual representations from semantic word embeddings. By this way, ZS3Net addresses pixel classification tasks where both seen and unseen categories are faced at test time (so called generalized zero-shot classification). Performance is further improved by a self-training step that relies on automatic pseudo-labeling of pixels from unseen classes. On the two standard segmentation datasets, Pascal-VOC and Pascal-Context, we propose zero-shot benchmarks and set competitive baselines. For complex scenes as ones in the Pascal-Context dataset, we extend our approach by using a graph-context encoding to fully leverage spatial context priors coming from class-wise segmentation maps.
Deep learning has significantly improved the precision of instance segmentation with abundant labeled data. However, in many areas like medical and manufacturing, collecting sufficient data is extremely hard and labeling this data requires high profe ssional skills. We follow this motivation and propose a new task set named zero-shot instance segmentation (ZSI). In the training phase of ZSI, the model is trained with seen data, while in the testing phase, it is used to segment all seen and unseen instances. We first formulate the ZSI task and propose a method to tackle the challenge, which consists of Zero-shot Detector, Semantic Mask Head, Background Aware RPN and Synchronized Background Strategy. We present a new benchmark for zero-shot instance segmentation based on the MS-COCO dataset. The extensive empirical results in this benchmark show that our method not only surpasses the state-of-the-art results in zero-shot object detection task but also achieves promising performance on ZSI. Our approach will serve as a solid baseline and facilitate future research in zero-shot instance segmentation.
111 - Yuang Liu , Wei Zhang , Jun Wang 2021
Model quantization is a promising approach to compress deep neural networks and accelerate inference, making it possible to be deployed on mobile and edge devices. To retain the high performance of full-precision models, most existing quantization me thods focus on fine-tuning quantized model by assuming training datasets are accessible. However, this assumption sometimes is not satisfied in real situations due to data privacy and security issues, thereby making these quantization methods not applicable. To achieve zero-short model quantization without accessing training data, a tiny number of quantization methods adopt either post-training quantization or batch normalization statistics-guided data generation for fine-tuning. However, both of them inevitably suffer from low performance, since the former is a little too empirical and lacks training support for ultra-low precision quantization, while the latter could not fully restore the peculiarities of original data and is often low efficient for diverse data generation. To address the above issues, we propose a zero-shot adversarial quantization (ZAQ) framework, facilitating effective discrepancy estimation and knowledge transfer from a full-precision model to its quantized model. This is achieved by a novel two-level discrepancy modeling to drive a generator to synthesize informative and diverse data examples to optimize the quantized model in an adversarial learning fashion. We conduct extensive experiments on three fundamental vision tasks, demonstrating the superiority of ZAQ over the strong zero-shot baselines and validating the effectiveness of its main components. Code is available at <https://git.io/Jqc0y>.
Understanding crowd behavior in video is challenging for computer vision. There have been increasing attempts on modeling crowded scenes by introducing ever larger property ontologies (attributes) and annotating ever larger training datasets. However , in contrast to still images, manually annotating video attributes needs to consider spatiotemporal evolution which is inherently much harder and more costly. Critically, the most interesting crowd behaviors captured in surveillance videos (e.g., street fighting, flash mobs) are either rare, thus have few examples for model training, or unseen previously. Existing crowd analysis techniques are not readily scalable to recognize novel (unseen) crowd behaviors. To address this problem, we investigate and develop methods for recognizing visual crowd behavioral attributes without any training samples, i.e., zero-shot learning crowd behavior recognition. To that end, we relax the common assumption that each individual crowd video instance is only associated with a single crowd attribute. Instead, our model learns to jointly recognize multiple crowd behavioral attributes in each video instance by exploring multiattribute cooccurrence as contextual knowledge for optimizing individual crowd attribute recognition. Joint multilabel attribute prediction in zero-shot learning is inherently nontrivial because cooccurrence statistics does not exist for unseen attributes. To solve this problem, we learn to predict cross-attribute cooccurrence from both online text corpus and multilabel annotation of videos with known attributes. Our experiments show that this approach to modeling multiattribute context not only improves zero-shot crowd behavior recognition on the WWW crowd video dataset, but also generalizes to novel behavior (violence) detection cross-domain in the Violence Flow video dataset.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا