ترغب بنشر مسار تعليمي؟ اضغط هنا

Zero-Shot Semantic Segmentation

167   0   0.0 ( 0 )
 نشر من قبل Maxime Bucher
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Semantic segmentation models are limited in their ability to scale to large numbers of object classes. In this paper, we introduce the new task of zero-shot semantic segmentation: learning pixel-wise classifiers for never-seen object categories with zero training examples. To this end, we present a novel architecture, ZS3Net, combining a deep visual segmentation model with an approach to generate visual representations from semantic word embeddings. By this way, ZS3Net addresses pixel classification tasks where both seen and unseen categories are faced at test time (so called generalized zero-shot classification). Performance is further improved by a self-training step that relies on automatic pseudo-labeling of pixels from unseen classes. On the two standard segmentation datasets, Pascal-VOC and Pascal-Context, we propose zero-shot benchmarks and set competitive baselines. For complex scenes as ones in the Pascal-Context dataset, we extend our approach by using a graph-context encoding to fully leverage spatial context priors coming from class-wise segmentation maps.



قيم البحث

اقرأ أيضاً

70 - Feihong Shen , Jun Liu , Ping Hu 2021
zero-shot learning is an essential part of computer vision. As a classical downstream task, zero-shot semantic segmentation has been studied because of its applicant value. One of the popular zero-shot semantic segmentation methods is based on the ge nerative model Most new proposed works added structures on the same architecture to enhance this model. However, we found that, from the view of causal inference, the result of the original model has been influenced by spurious statistical relationships. Thus the performance of the prediction shows severe bias. In this work, we consider counterfactual methods to avoid the confounder in the original model. Based on this method, we proposed a new framework for zero-shot semantic segmentation. Our model is compared with baseline models on two real-world datasets, Pascal-VOC and Pascal-Context. The experiment results show proposed models can surpass previous confounded models and can still make use of additional structures to improve the performance. We also design a simple structure based on Graph Convolutional Networks (GCN) in this work.
General purpose semantic segmentation relies on a backbone CNN network to extract discriminative features that help classify each image pixel into a seen object class (ie., the object classes available during training) or a background class. Zero-sho t semantic segmentation is a challenging task that requires a computer vision model to identify image pixels belonging to an object class which it has never seen before. Equipping a general purpose semantic segmentation model to separate image pixels of unseen classes from the background remains an open challenge. Some recent models have approached this problem by fine-tuning the final pixel classification layer of a semantic segmentation model for a Zero-Shot setting, but struggle to learn discriminative features due to the lack of supervision. We propose a recursive training scheme to supervise the retraining of a semantic segmentation model for a zero-shot setting using a pseudo-feature representation. To this end, we propose a Zero-Shot Maximum Mean Discrepancy (ZS-MMD) loss that weighs high confidence outputs of the pixel classification layer as a pseudo-feature representation, and feeds it back to the generator. By closing-the-loop on the generator end, we provide supervision during retraining that in turn helps the model learn a more discriminative feature representation for unseen classes. We show that using our recursive training and ZS-MMD loss, our proposed model achieves state-of-the-art performance on the Pascal-VOC 2012 dataset and Pascal-Context dataset.
Deep learning has significantly improved the precision of instance segmentation with abundant labeled data. However, in many areas like medical and manufacturing, collecting sufficient data is extremely hard and labeling this data requires high profe ssional skills. We follow this motivation and propose a new task set named zero-shot instance segmentation (ZSI). In the training phase of ZSI, the model is trained with seen data, while in the testing phase, it is used to segment all seen and unseen instances. We first formulate the ZSI task and propose a method to tackle the challenge, which consists of Zero-shot Detector, Semantic Mask Head, Background Aware RPN and Synchronized Background Strategy. We present a new benchmark for zero-shot instance segmentation based on the MS-COCO dataset. The extensive empirical results in this benchmark show that our method not only surpasses the state-of-the-art results in zero-shot object detection task but also achieves promising performance on ZSI. Our approach will serve as a solid baseline and facilitate future research in zero-shot instance segmentation.
Unlike conventional zero-shot classification, zero-shot semantic segmentation predicts a class label at the pixel level instead of the image level. When solving zero-shot semantic segmentation problems, the need for pixel-level prediction with surrou nding context motivates us to incorporate spatial information using positional encoding. We improve standard positional encoding by introducing the concept of Relative Positional Encoding, which integrates spatial information at the feature level and can handle arbitrary image sizes. Furthermore, while self-training is widely used in zero-shot semantic segmentation to generate pseudo-labels, we propose a new knowledge-distillation-inspired self-training strategy, namely Annealed Self-Training, which can automatically assign different importance to pseudo-labels to improve performance. We systematically study the proposed Relative Positional Encoding and Annealed Self-Training in a comprehensive experimental evaluation, and our empirical results confirm the effectiveness of our method on three benchmark datasets.
Few-shot semantic segmentation models aim to segment images after learning from only a few annotated examples. A key challenge for them is overfitting. Prior works usually limit the overall model capacity to alleviate overfitting, but the limited cap acity also hampers the segmentation accuracy. We instead propose a method that increases the overall model capacity by supplementing class-specific features with objectness, which is class-agnostic and so not prone to overfitting. Extensive experiments demonstrate the versatility of our method with multiple backbone models (ResNet-50, ResNet-101 and HRNetV2-W48) and existing base architectures (DENet and PFENet). Given only one annotated example of an unseen category, experiments show that our method outperforms state-of-art methods with respect to mIoU by at least 4.7% and 1.5% on PASCAL-5i and COCO-20i respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا