ﻻ يوجد ملخص باللغة العربية
We develop a new machine learning algorithm, Via Machinae, to identify cold stellar streams in data from the Gaia telescope. Via Machinae is based on ANODE, a general method that uses conditional density estimation and sideband interpolation to detect local overdensities in the data in a model agnostic way. By applying ANODE to the positions, proper motions, and photometry of stars observed by Gaia, Via Machinae obtains a collection of those stars deemed most likely to belong to a stellar stream. We further apply an automated line-finding method based on the Hough transform to search for line-like features in patches of the sky. In this paper, we describe the Via Machinae algorithm in detail and demonstrate our approach on the prominent stream GD-1. A companion paper contains our identification of other known stellar streams as well as new stellar stream candidates from Via Machinae. Though some parts of the algorithm are tuned to increase sensitivity to cold streams, the Via Machinae technique itself does not rely on astrophysical assumptions, such as the potential of the Milky Way or stellar isochrones. This flexibility suggests that it may have further applications in identifying other anomalous structures within the Gaia dataset, for example debris flow and globular clusters.
The Gaia satellite will observe the positions and velocities of over a billion Milky Way stars. In the early data releases, the majority of observed stars do not have complete 6D phase-space information. In this Letter, we demonstrate the ability to
The discovery of topological features of quantum states plays an important role in modern condensed matter physics and various artificial systems. Due to the absence of local order parameters, the detection of topological quantum phase transitions re
This article presents an original methodology for the prediction of steady turbulent aerodynamic fields. Due to the important computational cost of high-fidelity aerodynamic simulations, a surrogate model is employed to cope with the significant vari
Galaxy morphology is a fundamental quantity, that is essential not only for the full spectrum of galaxy-evolution studies, but also for a plethora of science in observational cosmology. While a rich literature exists on morphological-classification t
The perplexing mystery of what maintains the solar coronal temperature at about a million K, while the visible disc of the Sun is only at 5800 K, has been a long standing problem in solar physics. A recent study by Mondal(2020) has provided the first