ﻻ يوجد ملخص باللغة العربية
The Gaia satellite will observe the positions and velocities of over a billion Milky Way stars. In the early data releases, the majority of observed stars do not have complete 6D phase-space information. In this Letter, we demonstrate the ability to infer the missing line-of-sight velocities until more spectroscopic observations become available. We utilize a novel neural network architecture that, after being trained on a subset of data with complete phase-space information, takes in a stars 5D astrometry (angular coordinates, proper motions, and parallax) and outputs a predicted line-of-sight velocity with an associated uncertainty. Working with a mock Gaia catalog, we show that the network can successfully recover the distributions and correlations of each velocity component for stars that fall within ~5 kpc of the Sun. We also demonstrate that the network can accurately reconstruct the velocity distribution of a kinematic substructure in the stellar halo that is spatially uniform, even when it comprises a small fraction of the total star count.
We develop a new machine learning algorithm, Via Machinae, to identify cold stellar streams in data from the Gaia telescope. Via Machinae is based on ANODE, a general method that uses conditional density estimation and sideband interpolation to detec
The Chinese Space Station Telescope (CSST) spectroscopic survey plans to deliver high-quality low-resolution ($R > 200$) slitless spectra for hundreds of millions of targets down to a limiting magnitude of about 21 mag, covering a large survey area (
Stellar radial velocity (RV) measurements have proven to be a very successful method for detecting extrasolar planets. Analysing RV data to determine the parameters of the extrasolar planets is a significant statistical challenge owing to the presenc
The discovery of topological features of quantum states plays an important role in modern condensed matter physics and various artificial systems. Due to the absence of local order parameters, the detection of topological quantum phase transitions re
The Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) is an unbiased, massively multiplexed spectroscopic survey, designed to measure the expansion history of the universe through low-resolution ($Rsim750$) spectra of Lyman-Alpha Emitters. In it