ﻻ يوجد ملخص باللغة العربية
The relic gravitational wave background due to tensor linear perturbations generated during Higgs inflation is computed. Both the Standard Model and a well-motivated phenomenological completion (that accounts for all the experimentally confirmed evidence of new physics) are considered. We focus on critical Higgs inflation, which improves on the non-critical version and features an amplification of the tensor fluctuations. The latter property allows us to establish that future space-borne interferometers, such as DECIGO, BBO and ALIA, may detect the corresponding primordial gravitational waves.
Motivated by aLIGOs recent discovery of gravitational waves we discuss signatures of new physics that could be seen at ground and space-based interferometers. We show that a first order phase transition in a dark sector would lead to a detectable gra
We demonstrate how to realize within supergravity a novel chaotic-type inflationary scenario driven by the radial parts of a conjugate pair of Higgs superfields causing the spontaneous breaking of a grand unified gauge symmetry at a scale assuming th
Binary black holes emit gravitational radiation with net linear momentum leading to a retreat of the final remnant black hole that can reach up to $sim5,000$ km/s. Full numerical relativity simulations are the only tool to accurately compute these re
The discovery of gravitational waves, which are ripples of space-time itself, opened a new window to test general relativity, because it predicts that there are only plus and cross polarizations for gravitational waves. For alternative theories of gr
We systematically investigate the preheating behavior of single field inflation with an oscillon-supporting potential. We compute the properties of the emitted gravitational waves (GWs) and the number density and characteristics of the produced oscil