ﻻ يوجد ملخص باللغة العربية
In this paper, we prove the compressible Euler limit from Boltzmann equation with complete diffusive boundary condition in half-space by employing the Hilbert expansion which includes interior and Knudsen layers. This rigorously justifies the corresponding formal analysis in Sones book cite{Sone-2007-Book} in the context of short time smooth solutions. In particular, different with previous works in this direction, no Prandtl layers are needed.
The inviscid limit for the two-dimensional compressible viscoelastic equations on the half plane is considered under the no-slip boundary condition. When the initial deformation tensor is a perturbation of the identity matrix and the initial density
The Vlasov-Poisson-Boltzmann equation is a classical equation governing the dynamics of charged particles with the electric force being self-imposed. We consider the system in a convex domain with the Cercignani-Lampis boundary condition. We construc
We consider the isothermal Euler system with damping. We rigorously show the convergence of Barenblatt solutions towards a limit Gaussian profile in the isothermal limit $gamma$ $rightarrow$ 1, and we explicitly compute the propagation and the behavi
In this work, we study the motion of a rigid body in a bounded domain which is filled with a compressible isentropic fluid. We consider the Navier-slip boundary condition at the interface as well as at the boundary of the domain. This is the first ma
We consider a kinetic model whose evolution is described by a Boltzmann-like equation for the one-particle phase space distribution $f(x,v,t)$. There are hard-sphere collisions between the particles as well as collisions with randomly fixed scatterer