ترغب بنشر مسار تعليمي؟ اضغط هنا

Compressible Euler limit from Boltzmann equation with complete diffusive boundary condition in half-space

88   0   0.0 ( 0 )
 نشر من قبل Yi-Long Luo
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we prove the compressible Euler limit from Boltzmann equation with complete diffusive boundary condition in half-space by employing the Hilbert expansion which includes interior and Knudsen layers. This rigorously justifies the corresponding formal analysis in Sones book cite{Sone-2007-Book} in the context of short time smooth solutions. In particular, different with previous works in this direction, no Prandtl layers are needed.



قيم البحث

اقرأ أيضاً

124 - Dehua Wang , Feng Xie 2021
The inviscid limit for the two-dimensional compressible viscoelastic equations on the half plane is considered under the no-slip boundary condition. When the initial deformation tensor is a perturbation of the identity matrix and the initial density is near a positive constant, we establish the uniform estimates of solutions to the compressible viscoelastic flows in the conormal Sobolev spaces. It is well-known that for the corresponding inviscid limit of the compressible Navier-Stokes equations with the no-slip boundary condition, one does not expect the uniform energy estimates of solutions due to the appearance of strong boundary layers. However, when the deformation tensor effect is taken into account, our results show that the deformation tensor plays an important role in the vanishing viscosity process and can prevent the formation of strong boundary layers. As a result we are able to justify the inviscid limit of solutions for the compressible viscous flows under the no-slip boundary condition governed by the viscoelastic equations, based on the uniform conormal regularity estimates achieved in this paper.
The Vlasov-Poisson-Boltzmann equation is a classical equation governing the dynamics of charged particles with the electric force being self-imposed. We consider the system in a convex domain with the Cercignani-Lampis boundary condition. We construc t a uniqueness local-in-time solution based on an $L^infty$-estimate and $W^{1,p}$-estimate. In particular, we develop a new iteration scheme along the characteristic with the Cercignani-Lampis boundary for the $L^infty$-estimate, and an intrinsic decomposition of boundary integral for $W^{1,p}$-estimate.
We consider the isothermal Euler system with damping. We rigorously show the convergence of Barenblatt solutions towards a limit Gaussian profile in the isothermal limit $gamma$ $rightarrow$ 1, and we explicitly compute the propagation and the behavi or of Gaussian initial data. We then show the weak L 1 convergence of the density as well as the asymptotic behavior of its first and second moments. Contents 1. Introduction 1 2. Assumptions and main results 3 3. The limit $gamma$ $rightarrow$ 1 of Barenblatts solutions 6 4. Gaussian solutions 9 5. Evolution of certain quantities 10 6. Convergence 15 7. Conclusion 17 References 17
In this work, we study the motion of a rigid body in a bounded domain which is filled with a compressible isentropic fluid. We consider the Navier-slip boundary condition at the interface as well as at the boundary of the domain. This is the first ma thematical analysis of a compressible fluid-rigid body system where Navier-slip boundary conditions are considered. We prove existence of a weak solution of the fluid-structure system up to collision.
We consider a kinetic model whose evolution is described by a Boltzmann-like equation for the one-particle phase space distribution $f(x,v,t)$. There are hard-sphere collisions between the particles as well as collisions with randomly fixed scatterer s. As a result, this evolution does not conserve momentum but only mass and energy. We prove that the diffusively rescaled $f^varepsilon(x,v,t)=f(varepsilon^{-1}x,v,varepsilon^{-2}t)$, as $varepsilonto 0$ tends to a Maxwellian $M_{rho, 0, T}=frac{rho}{(2pi T)^{3/2}}exp[{-frac{|v|^2}{2T}}]$, where $rho$ and $T$ are solutions of coupled diffusion equations and estimate the error in $L^2_{x,v}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا