ﻻ يوجد ملخص باللغة العربية
The concept of topological gyrogroups is a generalization of a topological group. In this work, ones prove that a topological gyrogroup G is metrizable iff G has an {omega}{omega}-base and G is Frechet-Urysohn. Moreover, in topological gyrogroups, every (countably, sequentially) compact subset being strictly (strongly) Frechet-Urysohn and having an {omega}{omega}-base are all weakly three-space properties with H a closed L-subgyrogroup
A topological group $G$ is said to have a local $omega^omega$-base if the neighbourhood system at identity admits a monotone cofinal map from the directed set $omega^omega$. In particular, every metrizable group is such, but the class of groups with
A locally convex space (lcs) $E$ is said to have an $omega^{omega}$-base if $E$ has a neighborhood base ${U_{alpha}:alphainomega^omega}$ at zero such that $U_{beta}subseteq U_{alpha}$ for all $alphaleqbeta$. The class of lcs with an $omega^{omega}$-b
A topological space $X$ is defined to have an $omega^omega$-base if at each point $xin X$ the space $X$ has a neighborhood base $(U_alpha[x])_{alphainomega^omega}$ such that $U_beta[x]subset U_alpha[x]$ for all $alphalebeta$ in $omega^omega$. We char
A topological gyrogroup is a gyrogroup endowed with a topology such that the binary operation is jointly continuous and the inverse mapping is also continuous. In this paper, it is proved that if $G$ is a sequential topological gyrogroup with an $ome
Topological gyrogroups, with a weaker algebraic structure without associative law, have been investigated recently. We prove that each $T_{0}$-strongly topological gyrogroup is completely regular. We also prove that every $T_{0}$-strongly topological