ﻻ يوجد ملخص باللغة العربية
A locally convex space (lcs) $E$ is said to have an $omega^{omega}$-base if $E$ has a neighborhood base ${U_{alpha}:alphainomega^omega}$ at zero such that $U_{beta}subseteq U_{alpha}$ for all $alphaleqbeta$. The class of lcs with an $omega^{omega}$-base is large, among others contains all $(LM)$-spaces (hence $(LF)$-spaces), strong duals of distinguished Frechet lcs (hence spaces of distributions $D(Omega)$). A remarkable result of Cascales-Orihuela states that every compact set in a lcs with an $omega^{omega}$-base is metrizable. Our main result shows that every uncountable-dimensional lcs with an $omega^{omega}$-base contains an infinite-dimensional metrizable compact subset. On the other hand, the countable-dimensional space $varphi$ endowed with the finest locally convex topology has an $omega^omega$-base but contains no infinite-dimensional compact subsets. It turns out that $varphi$ is a unique infinite-dimensional locally convex space which is a $k_{mathbb{R}}$-space containing no infinite-dimensional compact subsets. Applications to spaces $C_{p}(X)$ are provided.
A topological space $X$ is defined to have an $omega^omega$-base if at each point $xin X$ the space $X$ has a neighborhood base $(U_alpha[x])_{alphainomega^omega}$ such that $U_beta[x]subset U_alpha[x]$ for all $alphalebeta$ in $omega^omega$. We char
The concept of topological gyrogroups is a generalization of a topological group. In this work, ones prove that a topological gyrogroup G is metrizable iff G has an {omega}{omega}-base and G is Frechet-Urysohn. Moreover, in topological gyrogroups, ev
A topological group $G$ is said to have a local $omega^omega$-base if the neighbourhood system at identity admits a monotone cofinal map from the directed set $omega^omega$. In particular, every metrizable group is such, but the class of groups with
In the present paper, we are aiming to study limiting behavior of infinite dimensional Volterra operators. We introduce two classes $tilde {mathcal{V}}^+$ and $tilde{mathcal{V}}^-$of infinite dimensional Volterra operators. For operators taken from t
This note provides a correct proof of the result claimed by the second author that locally compact normal spaces are collectionwise Hausdorff in certain models obtained by forcing with a coherent Souslin tree. A novel feature of the proof is the use