ﻻ يوجد ملخص باللغة العربية
We make two contributions to the study of polite combination in satisfiability modulo theories. The first contribution is a separation between politeness and strong politeness, by presenting a polite theory that is not strongly polite. This result shows that proving strong politeness (which is often harder than proving politeness) is sometimes needed in order to use polite combination. The second contribution is an optimization to the polite combination method, obtained by borrowing from the Nelson-Oppen method. In its non-deterministic form, the Nelson-Oppen method is based on guessing arrangements over shared variables. In contrast, polite combination requires an arrangement over emph{all} variables of the shared sort (not just the shared variables). We show that when using polite combination, if the other theory is stably infinite with respect to a shared sort, only the shared variables of that sort need be considered in arrangements, as in the Nelson-Oppen method. Reasoning about arrangements of variables is exponential in the worst case, so reducing the number of variables that are considered has the potential to improve performance significantly. We show preliminary evidence for this in practice by demonstrating a speed-up on a smart contract verification benchmark.
We prove that if A is a sigma-unital exact C*-algebra of real rank zero, then every state on K_0(A) is induced by a 2-quasitrace on A. This yields a generalisation of Rainones work on pure infiniteness and stable finiteness of crossed products to the
We introduce an approach that aims to combine the usage of satisfiability modulo theories (SMT) solvers with the Combinatory Logic Synthesizer (CL)S framework. (CL)S is a tool for the automatic composition of software components from a user-specified
We define a notion of stable and measurable map between cones endowed with measurability tests and show that it forms a cpo-enriched cartesian closed category. This category gives a denotational model of an extension of PCF supporting the main primit
We present two extensions of the LF Constructive Type Theory featuring monadic locks. A lock is a monadic type construct that captures the effect of an external call to an oracle. Such calls are the basic tool for gluing together diverse Type Theorie
We introduce filling families with matrix diagonalization as a refinement of the work by R{o}rdam and the first named author. As an application we improve a result on local pure infiniteness and show that the minimal tensor product of a strongly pure