ترغب بنشر مسار تعليمي؟ اضغط هنا

Unbounded quasitraces, stable finiteness and pure infiniteness

77   0   0.0 ( 0 )
 نشر من قبل Aidan Sims
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove that if A is a sigma-unital exact C*-algebra of real rank zero, then every state on K_0(A) is induced by a 2-quasitrace on A. This yields a generalisation of Rainones work on pure infiniteness and stable finiteness of crossed products to the non-unital case. It also applies to k-graph algebras associated to row-finite k-graphs with no sources. We show that for any k-graph whose C*-algebra is unital and simple, either every twisted C*-algebra associated to that k-graph is stably finite, or every twisted C*-algebra associated to that k-graph is purely infinite. Finally we provide sufficient and necessary conditions for a unital simple k-graph algebra to be purely infinite in terms of the underlying k-graph.



قيم البحث

اقرأ أيضاً

We introduce filling families with matrix diagonalization as a refinement of the work by R{o}rdam and the first named author. As an application we improve a result on local pure infiniteness and show that the minimal tensor product of a strongly pure ly infinite $C^*$-algebra and a exact $C^*$-algebra is again strongly purely infinite. Our results also yield a sufficient criterion for the strong pure infiniteness of crossed products $Artimes_varphi mathbb{N}$ by an endomorphism $varphi$ of $A$ (cf. Theorem 7.6). Our work confirms that the special class of nuclear Cuntz-Pimsner algebras constructed by Harnisch and the first named author consist of strongly purely infinite $C^*$-algebras, and thus absorb $mathcal{O}_infty$ tensorially.
We make two contributions to the study of polite combination in satisfiability modulo theories. The first contribution is a separation between politeness and strong politeness, by presenting a polite theory that is not strongly polite. This result shows that proving strong politeness (which is often harder than proving politeness) is sometimes needed in order to use polite combination. The second contribution is an optimization to the polite combination method, obtained by borrowing from the Nelson-Oppen method. In its non-deterministic form, the Nelson-Oppen method is based on guessing arrangements over shared variables. In contrast, polite combination requires an arrangement over emph{all} variables of the shared sort (not just the shared variables). We show that when using polite combination, if the other theory is stably infinite with respect to a shared sort, only the shared variables of that sort need be considered in arrangements, as in the Nelson-Oppen method. Reasoning about arrangements of variables is exponential in the worst case, so reducing the number of variables that are considered has the potential to improve performance significantly. We show preliminary evidence for this in practice by demonstrating a speed-up on a smart contract verification benchmark.
301 - David Kerr , Gabor Szabo 2018
Working within the framework of free actions of countable amenable groups on compact metrizable spaces, we show that the small boundary property is equivalent to a density version of almost finiteness, which we call almost finiteness in measure, and that under this hypothesis the properties of almost finiteness, comparison, and $m$-comparison for some nonnegative integer $m$ are all equivalent. The proof combines an Ornstein-Weiss tiling argument with the use of zero-dimensional extensions which are measure-isomorphic over singleton fibres. These kinds of extensions are also employed to show that if every free action of a given group on a zero-dimensional space is almost finite then so are all free actions of the group on spaces with finite covering dimension. Combined with recent results of Downarowicz-Zhang and Conley-Jackson-Marks-Seward-Tucker-Drob on dynamical tilings and of Castillejos-Evington-Tikuisis-White-Winter on the Toms-Winter conjecture, this implies that crossed product C$^*$-algebras arising from free minimal actions of groups with local subexponential growth on finite-dimensional spaces are classifiable in the sense of Elliotts program. We show furthermore that, for free actions of countably infinite amenable groups, the small boundary property implies that the crossed product has uniform property $Gamma$, which under minimality confirms the Toms-Winter conjecture for such crossed products by the aforementioned work of Castillejos-Evington-Tikuisis-White-Winter.
171 - Bram Mesland , Adam Rennie 2015
By considering the general properties of approximate units in differentiable algebras, we are able to present a unified approach to characterising completeness of spectral metric spaces, existence of connections on modules, and the lifting of Kasparo v products to the unbounded category. In particular, by strengthening Kasparovs technical theorem, we show that given any two composable KK-classes, we can find unbounded representatives whose product can be constructed to yield an unbounded representative of the Kasparov product.
251 - Joan Bosa 2021
We study the relation (and differences) between stability and Property (S) in the simple and stably finite framework. This leads us to characterize stable elements in terms of its support, and study these concepts from different sides : hereditary su balgebras, projections in the multiplier algebra and order properties in the Cuntz semigroup. We use these approaches to show both that cancellation at infinity on the Cuntz semigroup just holds when its Cuntz equivalence is given by isomorphism at the level of Hilbert right-modules, and that different notions as Regularity, $omega$-comparison, Corona Factorization Property, property R, etc.. are equivalent under mild assumptions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا