ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical avenues for Mercurys origin II: in-situ formation in the inner terrestrial disk

73   0   0.0 ( 0 )
 نشر من قبل Matthew Clement
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Modern terrestrial planet formation models are highly successful at consistently generating planets with masses and orbits analogous to those of Earth and Venus. In stark contrast to classic theoretical predictions and inferred demographics of multi-planet systems of rocky exoplanets, the mass (>10) and orbital period (>2) ratios between Venus and Earth and the neighboring Mercury and Mars are not common outcomes in numerically generated systems. While viable solutions to the small-Mars problem are abundant in the literature, Mercurys peculiar origin remains rather mysterious. In this paper, we investigate the possibility that Mercury formed in a mass-depleted, inner region of the terrestrial disk (a < 0.5 au). This regime is often neglected in terrestrial planet formation models because of the high computational cost of resolving hundreds of short-period objects over ~100 Myr timescales. By testing multiple disk profiles and mass distributions, we identify several promising sets of initial conditions that lead to remarkably successful analog systems. In particular, our most successful simulations consider moderate total masses of Mercury-forming material (0.1-0.25 Earth masses). While larger initial masses tend to yield disproportionate Mercury analogs, smaller values often inhibit the planets formation as the entire region of material is easily accreted by Venus. Additionally, we find that shallow surface density profiles and larger inventories of small planetesimals moderately improve the likelihood of adequately reproducing Mercury.



قيم البحث

اقرأ أيضاً

The absence of planets interior to Mercury continues to puzzle terrestrial planet formation models, particularly when contrasted with the relatively high derived occurrence rates of short-period planets around Sun-like stars. Recent work proposed tha t the majority of systems hosting hot super-Earths attain their orbital architectures through an epoch of dynamical instability after forming in quasi-stable, tightly packed configurations. Isotopic evidence seems to suggest that the formation of objects in the super-Earth mass regime is unlikely to have occurred in the solar system as the terrestrial-forming disk is thought to have been significantly mass-deprived starting around 2 Myr after CAI; a consequence of either Jupiters growth or an intrinsic disk feature. Nevertheless, terrestrial planet formation models and high-resolution investigations of planetesimal dynamics in the gas disk phase occasionally find that quasi-stable proto-planets with masses comparable to that of Mars emerge in the vicinity of Mercurys modern orbit. In this paper, we investigate whether it is possible for a primordial configuration of such objects to be cataclysmically destroyed in a manner that leaves Mercury behind as the sole survivor without disturbing the other terrestrial worlds. We use numerical simulations to show that this scenario is plausible. In many cases, the surviving Mercury analog experiences a series of erosive impacts; thereby boosting its Fe/Si ratio. A caveat of our proposed genesis scenario for Mercury is that Venus typically experiences at least one late giant impact.
Of the solar systems four terrestrial planets, the origin of Mercury is perhaps the most mysterious. Modern numerical simulations designed to model the dynamics of terrestrial planet formation systematically fail to replicate Mercury; which possesses just 5% the mass of Earth and the highest orbital eccentricity and inclination among the planets. However, Mercurys large iron-rich core and low volatile inventory stand out among the inner planets, and seem to imply a violent collisional origin. Because most algorithms used for simulating terrestrial accretion do not consider the effects of collisional fragmentation, it has been difficult to test these collisional hypotheses within the larger context of planet formation. Here, we analyze a large suite of terrestrial accretion models that account for the fragmentation of colliding bodies. We find that planets with core mass fractions boosted as a result of repeated hit-and-run collisions are produced in 90% of our simulations. While many of these planets are similar to Mercury in mass, they rarely lie on Mercury-like orbits. Furthermore, we perform an additional batch of simulations designed to specifically test the single giant impact origin scenario. We find less than a 1% probability of simultaneously replicating the Mercury-Venus dynamical spacing and the terrestrial systems degree of orbital excitation after such an event. While dynamical models have made great strides in understanding Mars low mass, their inability to form accurate Mercury analogs remains a glaring problem.
Models of terrestrial planet formation for our solar system have been successful in producing planets with masses and orbits similar to those of Venus and Earth. However, these models have generally failed to produce Mars-sized objects around 1.5 AU. The body that is usually formed around Mars semimajor axis is, in general, much more massive than Mars. Only when Jupiter and Saturn are assumed to have initially very eccentric orbits (e $sim$ 0.1), which seems fairly unlikely for the solar system, or alternately, if the protoplanetary disk is truncated at 1.0 AU, simulations have been able to produce Mars-like bodies in the correct location. In this paper, we examine an alternative scenario for the formation of Mars in which a local depletion in the density of the protosolar nebula results in a non-uniform formation of planetary embryos and ultimately the formation of Mars-sized planets around 1.5 AU. We have carried out extensive numerical simulations of the formation of terrestrial planets in such a disk for different scales of the local density depletion, and for different orbital configurations of the giant planets. Our simulations point to the possibility of the formation of Mars-sized bodies around 1.5 AU, specifically when the scale of the disk local mass-depletion is moderately high (50-75%) and Jupiter and Saturn are initially in their current orbits. In these systems, Mars-analogs are formed from the protoplanetary materials that originate in the regions of disk interior or exterior to the local mass-depletion. Results also indicate that Earth-sized planets can form around 1 AU with a substantial amount of water accreted via primitive water-rich planetesimals and planetary embryos. We present the results of our study and discuss their implications for the formation of terrestrial planets in our solar system.
We present observations of an H$alpha$ emitting knot in the thick disk of NGC 4013, demonstrating it is an H II region surrounding a cluster of young hot stars $z = 860$ pc above the plane of this edge-on spiral galaxy. With LBT/MODS spectroscopy we show this H II region has an H$alpha$ luminosity $sim 4$ - 7 times that of the Orion nebula, with an implied ionizing photon production rate $log Q_0 gtrsim 49.4$ (photons s$^{-1}$). HST/WFPC2 imaging reveals an associated blue continuum source with $M_{V} = -8.21pm0.24$. Together these properties demonstrate the H II region is powered by a young cluster of stars formed {em in situ} in the thick disk with an ionizing photon flux equivalent to $sim$6 O7 V stars. If we assume $approx6$ other extraplanar halpha -emitting knots are H II regions, the total thick disk star formation rate of gc 4013 is $sim 5 times 10^{-4}$ M$_odot$ yr$^{-1}$. The star formation likely occurs in the dense clouds of the interstellar thick disk seen in optical images of dust extinction and CO emission.
We investigate the formation of terrestrial planets in the late stage of planetary formation using two-planet model. At that time, the protostar has formed for about 3 Myr and the gas disk has dissipated. In the model, the perturbations from Jupiter and Saturn are considered. We also consider variations of the mass of outer planet, and the initial eccentricities and inclinations of embryos and planetesimals. Our results show that, terrestrial planets are formed in 50 Myr, and the accretion rate is about $60% - 80%$. In each simulation, 3 - 4 terrestrial planets are formed inside Jupiter with masses of $0.15 - 3.6 M_{oplus}$. In the $0.5 - 4$ AU, when the eccentricities of planetesimals are excited, planetesimals are able to accrete material from wide radial direction. The plenty of water material of the terrestrial planet in the Habitable Zone may be transferred from the farther places by this mechanism. Accretion could also happen a few times between two major planets only if the outer planet has a moderate mass and the small terrestrial planet could survive at some resonances over time scale of $10^8$ yr. In one of our simulations, com-mensurability of the orbital periods of planets is very common. Moreover, a librating-circulating 3:2 configuration of mean motion resonance is found.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا