ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulations for Terrestrial Planets Formation

450   0   0.0 ( 0 )
 نشر من قبل Jianghui Ji
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the formation of terrestrial planets in the late stage of planetary formation using two-planet model. At that time, the protostar has formed for about 3 Myr and the gas disk has dissipated. In the model, the perturbations from Jupiter and Saturn are considered. We also consider variations of the mass of outer planet, and the initial eccentricities and inclinations of embryos and planetesimals. Our results show that, terrestrial planets are formed in 50 Myr, and the accretion rate is about $60% - 80%$. In each simulation, 3 - 4 terrestrial planets are formed inside Jupiter with masses of $0.15 - 3.6 M_{oplus}$. In the $0.5 - 4$ AU, when the eccentricities of planetesimals are excited, planetesimals are able to accrete material from wide radial direction. The plenty of water material of the terrestrial planet in the Habitable Zone may be transferred from the farther places by this mechanism. Accretion could also happen a few times between two major planets only if the outer planet has a moderate mass and the small terrestrial planet could survive at some resonances over time scale of $10^8$ yr. In one of our simulations, com-mensurability of the orbital periods of planets is very common. Moreover, a librating-circulating 3:2 configuration of mean motion resonance is found.



قيم البحث

اقرأ أيضاً

Recently, gas disks have been discovered around main sequence stars well beyond the usual protoplanetary disk lifetimes (i.e., > 10 Myrs), when planets have already formed. These gas disks, mainly composed of CO, carbon, and oxygen seem to be ubiquit ous in systems with planetesimal belts (similar to our Kuiper belt), and can last for hundreds of millions of years. Planets orbiting in these gas disks will accrete a large quantity of gas that will transform their primordial atmospheres into new secondary atmospheres with compositions similar to that of the parent gas disk. Here, we quantify how large a secondary atmosphere can be created for a variety of observed gas disks and for a wide range of planet types. We find that gas accretion in this late phase is very significant and an Earths atmospheric mass of gas is readily accreted on terrestrial planets in very tenuous gas disks. In slightly more massive disks, we show that massive CO atmospheres can be accreted, forming planets with up to sub-Neptune-like pressures. Our new results demonstrate that new secondary atmospheres with high metallicities and high C/O ratios will be created in these late gas disks, resetting their primordial compositions inherited from the protoplanetary disk phase, and providing a new birth to planets that lost their atmosphere to photoevaporation or giant impacts. We therefore propose a new paradigm for the formation of atmospheres on low-mass planets, which can be tested with future observations (JWST, ELT, ARIEL). We also show that this late accretion would show a very clear signature in Sub-Neptunes or cold exo-Jupiters. Finally, we find that accretion creates cavities in late gas disks, which could be used as a new planet detection method, for low mass planets a few au to a few tens of au from their host stars.
We present the results of an extensive study of the final stage of terrestrial planet formation in disks with different surface density profiles and for different orbits of Jupiter and Saturn. We carried out simulations for disk densities proportiona l to r^-0.5, r^-1, and r^-1.5, and also for partially depleted disks as in the recent model of Mars formation by Izidoro et al (2014). The purpose of our study is to determine how the final assembly of planets and their physical properties are affected by the total mass of the disk and its radial profile. Because of the important roles of secular resonances in orbits and properties of the final planets, we studied the effects of these resonances as well. We have divided this study into two parts. In Part 1, we are interested in examining the effects of secular resonances on the formation of Mars and orbital stability of terrestrial planets. In Part 2, our goal is to determine trends that may exist between the disk surface density profile and the final properties of terrestrial planets. In the context of the depleted disk model, results show that the nu_5 resonance does not have a significant effect on the final orbits of terrestrial planets. However, nu_6 and nu_16 resonances play important roles in clearing their affected areas ensuring that no additional mass will be scattered into the accretion zone of Mars so that it can maintain its mass and orbital stability. In Part 2, our results indicate that despite some small correlations, in general, no trend seems to exist between the disk surface density profile and the mean number of the final planets, their masses, time of formation, and distances to the central star. We present the results of our simulations and discuss their implications for the formation of Mars and other terrestrial planets, as well as the physical properties of these objects such as their masses and water contents.
[Abridged] We present an extensive suite of terrestrial planet formation simulations that allows quantitative analysis of the stochastic late stages of planet formation. We quantify the feeding zone width, Delta a, as the mass-weighted standard devia tion of the initial semi-major axes of the planetary embryos and planetesimals that make up the final planet. The size of a planets feeding zone in our simulations does not correlate with its final mass or semi-major axis, suggesting there is no systematic trend between a planets mass and its volatile inventory. Instead, we find that the feeding zone of any planet more massive than 0.1M_Earth is roughly proportional to the radial extent of the initial disk from which it formed: Delta a~0.25(a_max-a_min), where a_min and a_max are the inner and outer edge of the initial planetesimal disk. These wide stochastic feeding zones have significant consequences for the origin of the Moon, since the canonical scenario predicts the Moon should be primarily composed of material from Earths last major impactor (Theia), yet its isotopic composition is indistinguishable from Earth. In particular, we find that the feeding zones of Theia analogs are significantly more stochastic than the planetary analogs. Depending on our assumed initial distribution of oxygen isotopes within the planetesimal disk, we find a ~5% or less probability that the Earth and Theia will form with an isotopic difference equal to or smaller than the Earth and Moons. In fact we predict that every planetary mass body should be expected to have a unique isotopic signature. In addition, we find paucities of massive Theia analogs and high velocity moon-forming collisions, two recently proposed explanations for the Moons isotopic composition. Our work suggests that there is still no scenario for the Moons origin that explains its isotopic composition with a high probability event.
To reproduce the orbits and masses of the terrestrial planets (analogs) of the solar system, most studies scrutinize simulations for success as a batch. However, there is insufficient discussion in the literature on the likelihood of forming planet a nalogs simultaneously in the same system (analog system). To address this issue, we performed 540 N-body simulations of protoplanetary disks representative of typical models in the literature. We identified a total of 194 analog systems containing at least three analogs, but only 17 systems simultaneously contained analogs of the four terrestrial planets. From an analysis of our analog systems, we found that, compared to the real planets, truncated disks based on typical outcomes of the Grand Tack model produced analogs of Mercury and Mars that were too dynamically cold and located too close to the Venus and Earth analogs. Additionally, all the Mercury analogs were too massive, while most of the Mars analogs were more massive than Mars. Furthermore, the timing of the Moon-forming impact was too early in these systems, and the amount of additional mass accreted after the event was too great. Therefore, such truncated disks cannot explain the formation of the terrestrial planets. Our results suggest that forming the four terrestrial planets requires disks with the following properties: 1) Mass concentrated in narrow core regions between ~0.7-0.9 and ~1.0-1.2 au; 2) an inner region component starting at ~0.3-0.4 au; 3) a less massive component beginning at ~1.0-1.2 au; 4) embryos rather than planetesimals carrying most of the disk mass; and 5) Jupiter and Saturn placed on eccentric orbits.
We reexamine the popular belief that a telluric planet or satellite on an eccentric orbit can, outside a spin-orbit resonance, be captured in a quasi-static tidal equilibrium called pseudosynchronous rotation. The existence of such configurations was deduced from oversimplified tidal models assuming either a constant tidal torque or a torque linear in the tidal frequency. A more accurate treatment requires that the torque be decomposed into the Darwin-Kaula series over the tidal modes, and that this decomposition be combined with a realistic choice of rheological properties of the mantle. This development demonstrates that there exist no stable equilibrium states for solid planets and moons, other than spin-orbit resonances.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا