ﻻ يوجد ملخص باللغة العربية
The multipolar Kondo problem, wherein the quantum impurity carries higher-rank multipolar moments, has seen recent theoretical and experimental interest due to proposals of novel non-Fermi liquid states and the availability of a variety of material platforms. The multipolar nature of local moments, in conjunction with constraining crystal field symmetries, leads to a vast array of possible interactions and resulting non-Fermi liquid ground states. Previous works on Kondo physics have typically focussed on impurities that have two degenerate internal states. In this work, inspired by recent experiments on the tetragonal material YbRu$_{2}$Ge$_{2}$, which has been shown to exhibit a local moment with a quasi-fourfold degenerate ground state, we consider the Kondo effect for such a quasi-quartet multipolar impurity. In the tetragonal crystal field environment, the local moment supports dipolar, quadrupolar, and octupolar moments, which interact with conduction electrons in entangled spin and orbital states. Using renormalization group analysis, we uncover a number of emergent quantum ground states characterized by non-trivial fixed points. It is shown that these previously unidentified fixed points are described by truncated SU(4) Kondo models, where only some of the SU(4) generators (representing the impurity degrees of freedom) are coupled to conduction electrons. Such novel non-trivial fixed points are unique to the quasi-quartet multipolar impurity, reinforcing the idea that an unexplored rich diversity of phenomena may be produced by multipolar quantum impurity systems.
Recently it was shown that the multipolar Kondo problem, wherein a quantum impurity carrying higher-rank multipolar moments interacts with conduction electrons, leads to novel non-Fermi liquid states. Because of the multipolar character of the local
We present an extensive study of the two-impurity Kondo problem for spin-1 adatoms on square lattice using an exact canonical transformation to map the problem onto an effective one-dimensional system that can be numerically solved using the density
We consider the Kondo effect arising from a hydrogen impurity in graphene. As a first approximation, the strong covalent bond to a carbon atom removes that carbon atom without breaking the $C_{3}$ rotation symmetry, and we only retain the Hubbard int
We examine the low energy behavior of a double quantum dot in a regime where spin and pseudospin excitations are degenerate. The individual quantum dots are described by Anderson impurity models with an on-site interaction $U$ which are capacitively
Realization of semimetals with non-trivial topologies such as Dirac and Weyl semimetals, have provided a boost in the study of these quantum materials. Presence of electron correlation makes the system even more exotic due to enhanced scattering of c