ﻻ يوجد ملخص باللغة العربية
We consider the Kondo effect arising from a hydrogen impurity in graphene. As a first approximation, the strong covalent bond to a carbon atom removes that carbon atom without breaking the $C_{3}$ rotation symmetry, and we only retain the Hubbard interaction on the three nearest neighbors of the removed carbon atom which then behave as magnetic impurities. These three impurity spins are coupled to three conduction channels with definite helicity, two of which support a diverging local density of states (LDOS) $propto 1/ [ | omega | ln ^{2}( Lambda /| omega | ) ] $ near the Dirac point $omega rightarrow 0$ even though the bulk density of states vanishes linearly. We study the resulting 3-impurity multi-channel Kondo model using the numerical renormalization group method. For weak potential scattering, the ground state of the Kondo model is a particle-hole symmetric spin-$1/2$ doublet, with ferromagnetic coupling between the three impurity spins; for moderate potential scattering, the ground state becomes a particle-hole asymmetric spin singlet, with antiferromagnetic coupling between the three impurity spins. This behavior is inherited by the Anderson model containing the hydrogen impurity and all four carbon atoms in its vicinity.
We investigate the many-body effects of a magnetic adatom in ferromagnetic graphene by using the numerical renormalization group method. The nontrivial band dispersion of ferromagnetic graphene gives rise to interesting Kondo physics different from t
We have studied the interplay of an Anderson impurity in Landau quantized graphene, with special emphasis on the influence of the chemical potential. Within the slave-boson mean-field theory, we found reentrant Kondo behaviour by varying the chemical
We have carried out a generalized Schrieffer-Wolff transformation of an Anderson two-impurity Hamiltonian to study the low-energy spin interactions of the system. The second-order expansion yields the standard Kondo Hamiltonian for two impurities wit
We study nonequilibrium thermoelectric transport properties of a correlated impurity connected to two leads for temperatures below the Kondo scale. At finite bias, for which a current flows across the leads, we investigate the differential response o
We present an extensive study of the two-impurity Kondo problem for spin-1 adatoms on square lattice using an exact canonical transformation to map the problem onto an effective one-dimensional system that can be numerically solved using the density