ﻻ يوجد ملخص باللغة العربية
We study the effect of quantum vibronic coupling on the electronic properties of carbon allotropes, including molecules and solids, by combining path integral first principles molecular dynamics (FPMD) with a colored noise thermostat. In addition to avoiding several approximations commonly adopted in calculations of electron-phonon coupling, our approach only adds a moderate computational cost to FPMD simulations and hence it is applicable to large supercells, such as those required to describe amorphous solids. We predict the effect of electron-phonon coupling on the fundamental gap of amorphous carbon, and we show that in diamond the zero-phonon renormalization of the band gap is larger than previously reported.
We present an accurate computational study of the electronic structure and lattice dynamics of solid molecular hydrogen at high pressure. The band-gap energies of the $C2/c$, $Pc$, and $P6_3/m$ structures at pressures of 250, 300, and 350 GPa are cal
We present many-body textit{ab initio} calculations of the electronic and optical properties of semiconducting zigzag carbon nanotubes under uniaxial strain. The GW approach is utilized to obtain the quasiparticle bandgaps and is combined with the Be
We have performed an experimental study of the crystal structure, lattice-dynamics, and optical properties of PbCrO4 (the mineral crocoite) at ambient and high pressures. In particular, the crystal structure, Raman-active phonons, and electronic band
The first principles density functional theory (DFT) is applied to study effects of molecular adsorption on optical losses of silver (111) surface. The ground states of the systems including water, methanol, and ethanol molecules adsorbed on Ag (111)
Feynman path-integral deep potential molecular dynamics (PI-DPMD) calculations have been employed to study both light (H$_2$O) and heavy water (D$_2$O) within the isothermal-isobaric ensemble. In particular, the deep neural network is trained based o