ﻻ يوجد ملخص باللغة العربية
Collective spin operators for symmetric multi-quDit (namely, identical $D$-level atom) systems generate a U$(D)$ symmetry. We explore generalizations to arbitrary $D$ of SU(2)-spin coherent states and their adaptation to parity (multicomponent Schrodinger cats), together with multi-mode extensions of NOON states. We write level, one- and two-quDit reduced density matrices of symmetric $N$-quDit states, expressed in the last two cases in terms of collective U$(D)$-spin operator expectation values. Then we evaluate level and particle entanglement for symmetric multi-quDit states with linear and von Neumann entropies of the corresponding reduced density matrices. In particular, we analyze the numerical and variational ground state of Lipkin-Meshkov-Glick models of $3$-level identical atoms. We also propose an extension of the concept of SU(2) spin squeezing to SU$(D)$ and relate it to pairwise $D$-level atom entanglement. Squeezing parameters and entanglement entropies are good markers that characterize the different quantum phases, and their corresponding critical points, that take place in these interacting $D$-level atom models.
We introduce the notion of Mixed Symmetry Quantum Phase Transition (MSQPT) as singularities in the transformation of the lowest-energy state properties of a system of identical particles inside each permutation symmetry sector $mu$, when some Hamilto
The Lipkin-Meshkov-Glick (LMG) model describes critical systems with interaction beyond the first-neighbor approximation. Here we address the characterization of LMG systems, i.e. the estimation of anisotropy, and show how criticality may be exploite
We introduce a class of generalized Lipkin-Meshkov-Glick (gLMG) models with su$(m)$ interactions of Haldane-Shastry type. We have computed the partition function of these models in closed form by exactly evaluating the partition function of the restr
The dynamics of the one-tangle and the concurrence is analyzed in the Lipkin-Meshkov-Glick model which describes many physical systems such as the two-mode Bose-Einstein condensates. We consider two different initial states which are physically relev
We establish a set of nonequilibrium quantum phase transitions in the Lipkin-Meshkov-Glick model under monochromatic modulation of the inter-particle interaction. We show that the external driving induces a rich phase diagram that characterizes the m