ترغب بنشر مسار تعليمي؟ اضغط هنا

AC-driven Quantum Phase Transition in the Lipkin-Meshkov-Glick Model

193   0   0.0 ( 0 )
 نشر من قبل Victor Manuel Bastidas Valencia
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We establish a set of nonequilibrium quantum phase transitions in the Lipkin-Meshkov-Glick model under monochromatic modulation of the inter-particle interaction. We show that the external driving induces a rich phase diagram that characterizes the multistability in the system. Interestingly, the number of stable configurations can be tuned by increasing the amplitude of the driving field. Furthermore, by studying the quantum evolution, we demonstrate that the system exhibits a set of quantum phases that correspond to dynamically stabilized states.



قيم البحث

اقرأ أيضاً

71 - Gang Chen , J.-Q.Liang 2006
Lipkin model of arbitrary particle-number N is studied in terms of exact differential-operator representation of spin-operators from which we obtain the low-lying energy spectrum with the instanton method of quantum tunneling. Our new observation is that the well known quantum phase transition can also occur in the finite-N model only if N is an odd-number. We furthermore demonstrate a new type of quantum phase transition characterized by level-crossing which is induced by the geometric phase interference and is marvelously periodic with respect to the coupling parameter. Finally the conventional quantum phase transition is understood intuitively from the tunneling formulation in the thermodynamic limit.
In this work we discuss the existence of time-translation symmetry breaking in a kicked infinite-range-interacting clean spin system described by the Lipkin-Meshkov-Glick model. This Floquet time crystal is robust under perturbations of the kicking p rotocol, its existence being intimately linked to the underlying $mathbb{Z}_2$ symmetry breaking of the time-independent model. We show that the model being infinite-range and having an extensive amount of symmetry breaking eigenstates is essential for having the time-crystal behaviour. In particular we discuss the properties of the Floquet spectrum, and show the existence of doublets of Floquet states which are respectively even and odd superposition of symmetry broken states and have quasi-energies differing of half the driving frequencies, a key essence of Floquet time crystals. Remarkably, the stability of the time-crystal phase can be directly analysed in the limit of infinite size, discussing the properties of the corresponding classical phase space. Through a detailed analysis of the robustness of the time crystal to various perturbations we are able to map the corresponding phase diagram. We finally discuss the possibility of an experimental implementation by means of trapped ions.
We derive a Lindblad master equation that approximates the dynamics of a Lipkin-Meshkov-Glick (LMG) model weakly coupled to a bosonic bath. By studying the time evolution of operators under the adjoint master equation we prove that, for large system sizes, these operators attain their thermal equilibrium expectation values in the long-time limit, and we calculate the rate at which these values are approached. Integrability of the LMG model prevents thermalization in the absence of a bath, and our work provides an explicit proof that the bath indeed restores thermalization. Imposing thermalization on this otherwise non-thermalizing model outlines an avenue towards probing the unconventional thermodynamic properties predicted to occur in ultracold-atom-based realizations of the LMG model.
The Lipkin-Meshkov-Glick (LMG) model describes critical systems with interaction beyond the first-neighbor approximation. Here we address the characterization of LMG systems, i.e. the estimation of anisotropy, and show how criticality may be exploite d to improve precision. In particular, we provide exact results for the Quantum Fisher Information of small-size LMG chains made of $N=2, 3$ and $4$ lattice sites and analyze the same quantity in the thermodynamical limit by means of a zero-th order approximation of the system Hamiltonian. We then show that the ultimate bounds to precision may be achieved by tuning the external field and by measuring the total magnetization of the system. We also address the use of LMG systems as quantum thermometers and show that: i) precision is governed by the gap between the lowest energy levels of the systems, ii) field-dependent level crossing provides a resource to extend the operating range of the quantum thermometer.
We study the critical properties of the Lipkin-Meshkov-Glick Model in terms of the fidelity susceptibility. By using the Holstein-Primakoff transformation, we obtain explicitly the critical exponent of the fidelity susceptibility around the second-or der quantum phase transition point. Our results provide a rare analytical case for the fidelity susceptibility in describing the universality class in quantum critical behavior. The different critical exponents in two phases are non-trivial results, indicating the fidelity susceptibility is not always extensive.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا