ﻻ يوجد ملخص باللغة العربية
In our paper [18] we showed that a Tychonoff space $X$ is a $Delta$-space (in the sense of [20], [30]) if and only if the locally convex space $C_{p}(X)$ is distinguished. Continuing this research, we investigate whether the class $Delta$ of $Delta$-spaces is invariant under the basic topological operations. We prove that if $X in Delta$ and $varphi:X to Y$ is a continuous surjection such that $varphi(F)$ is an $F_{sigma}$-set in $Y$ for every closed set $F subset X$, then also $Yin Delta$. As a consequence, if $X$ is a countable union of closed subspaces $X_i$ such that each $X_iin Delta$, then also $Xin Delta$. In particular, $sigma$-product of any family of scattered Eberlein compact spaces is a $Delta$-space and the product of a $Delta$-space with a countable space is a $Delta$-space. Our results give answers to several open problems posed in cite{KL}. Let $T:C_p(X) longrightarrow C_p(Y)$ be a continuous linear surjection. We observe that $T$ admits an extension to a linear continuous operator $widehat{T}$ from $R^X$ onto $R^Y$ and deduce that $Y$ is a $Delta$-space whenever $X$ is. Similarly, assuming that $X$ and $Y$ are metrizable spaces, we show that $Y$ is a $Q$-set whenever $X$ is. Making use of obtained results, we provide a very short proof for the claim that every compact $Delta$-space has countable tightness. As a consequence, under Proper Forcing Axiom (PFA) every compact $Delta$-space is sequential. In the article we pose a dozen open questions.
We prove that the locally convex space $C_{p}(X)$ of continuous real-valued functions on a Tychonoff space $X$ equipped with the topology of pointwise convergence is distinguished if and only if $X$ is a $Delta$-space in the sense of cite {Knight}. A
As proved in [16], for a Tychonoff space $X$, a locally convex space $C_{p}(X)$ is distinguished if and only if $X$ is a $Delta$-space. If there exists a linear continuous surjective mapping $T:C_p(X) to C_p(Y)$ and $C_p(X)$ is distinguished, then $C
Hurewicz proved completely metrizable Menger spaces are /sigma-compact. We extend this to Cech-complete Menger spaces and consistently to projective Menger metrizable spaces. On the other hand, it is consistent that there is a co-analytic Menger space that is not /sigma-compact.
We prove that for a stratifiable scattered space $X$ of finite scattered height, the function space $C_k(X)$ endowed with the compact-open topology is Baire if and only if $X$ has the Moving Off Property of Gruenhage and Ma. As a byproduct of the pro
A theorem by Norman L. Noble from 1970 asserts that every product of completely regular, locally pseudo-compact k_R-spaces is a k_R-space. As a consequence, all direct products of locally compact Hausdorff spaces are k_R-spaces. We provide a streamlined proof for this fact.