ترغب بنشر مسار تعليمي؟ اضغط هنا

On Baire category properties of function spaces $C_k(X,Y)$

194   0   0.0 ( 0 )
 نشر من قبل Taras Banakh
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove that for a stratifiable scattered space $X$ of finite scattered height, the function space $C_k(X)$ endowed with the compact-open topology is Baire if and only if $X$ has the Moving Off Property of Gruenhage and Ma. As a byproduct of the proof we establish many interesting Baire category properties of the function spaces $C_k(X,Y)={fin C_k(X,Y):f(X)subset{*_Y}}$, where $X$ is a topological space, $X$ is the set of non-isolated points of $X$, and $Y$ is a topological space with a distinguished point $*_Y$.



قيم البحث

اقرأ أيضاً

107 - Leijie Wang , Taras Banakh 2019
For a Tychonoff space $X$ and a subspace $Ysubsetmathbb R$, we study Baire category properties of the space $C_{downarrow F}(X,Y)$ of continuous functions from $X$ to $Y$, endowed with the Fell hypograph topology. We characterize pairs $X,Y$ for whic h the function space $C_{downarrow F}(X,Y)$ is $infty$-meager, meager, Baire, Choquet, strong Choquet, (almost) complete-metrizable or (almost) Polish.
In this paper, we intend to show that under not too restrictive conditions, results much stronger than the one obtained earlier by Hejduk could be established in category bases.
W. Hurewicz proved that analytic Menger sets of reals are $sigma$-compact and that co-analytic completely Baire sets of reals are completely metrizable. It is natural to try to generalize these theorems to projective sets. This has previously been ac complished by $V = L$ for projective counterexamples, and the Axiom of Projective Determinacy for positive results. For the first problem, the first author, S. Todorcevic, and S. Tokgoz have produced a finer analysis with much weaker axioms. We produce a similar analysis for the second problem, showing the two problems are essentially equivalent. We also construct in ZFC a separable metrizable space with $omega$-th power completely Baire, yet lacking a dense completely metrizable subspace. This answers a question of Eagle and Tall in Abstract Model Theory.
Let $mathcal{I}$ be a meager ideal on $mathbf{N}$. We show that if $x$ is a sequence with values in a separable metric space then the set of subsequences [resp. permutations] of $x$ which preserve the set of $mathcal{I}$-cluster points of $x$ is topo logically large if and only if every ordinary limit point of $x$ is also an $mathcal{I}$-cluster point of $x$. The analogue statement fails for all maximal ideals. This extends the main results in [Topology Appl. textbf{263} (2019), 221--229]. As an application, if $x$ is a sequence with values in a first countable compact space which is $mathcal{I}$-convergent to $ell$, then the set of subsequences [resp. permutations] which are $mathcal{I}$-convergent to $ell$ is topologically large if and only if $x$ is convergent to $ell$ in the ordinary sense. Analogous results hold for $mathcal{I}$-limit points, provided $mathcal{I}$ is an analytic P-ideal.
148 - Franklin D. Tall 2015
We prove some consistency results concerning the Moving Off Property for locally compact spaces and thus the question of whether their function spaces are Baire.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا