ﻻ يوجد ملخص باللغة العربية
Computer security has been plagued by increasing formidable, dynamic, hard-to-detect, hard-to-predict, and hard-to-characterize hacking techniques. Such techniques are very often deployed in self-propagating worms capable of automatically infecting vulnerable computer systems and then building large bot networks, which are then used to launch coordinated attacks on designated targets. In this work, we investigate novel applications of Natural Language Processing (NLP) methods to detect and correlate botnet behaviors through the analysis of honeypot data. In our approach we take observed behaviors in shell commands issued by intruders during captured internet sessions and reduce them to collections of stochastic processes that are, in turn, processed with machine learning techniques to build classifiers and predictors. Our technique results in a new ability to cluster botnet source IP address even in the face of their desire to obfuscate their penetration attempts through rapid or random permutation techniques.
Command and control (C&C) is the essential component of a botnet. In previous C&C using online social networks (OSNs), the botmasters identifiers are reversible. After a bot is analyzed, the botmasters accounts can be predicted in advance. Additional
Botnets are increasingly used by malicious actors, creating increasing threat to a large number of internet users. To address this growing danger, we propose to study methods to detect botnets, especially those that are hard to capture with the commo
The number of scientific journal articles and reports being published about energetic materials every year is growing exponentially, and therefore extracting relevant information and actionable insights from the latest research is becoming a consider
Given a closed-source program, such as most of proprietary software and viruses, binary code analysis is indispensable for many tasks, such as code plagiarism detection and malware analysis. Today, source code is very often compiled for various archi
Neural networks models for NLP are typically implemented without the explicit encoding of language rules and yet they are able to break one performance record after another. This has generated a lot of research interest in interpreting the representa