ﻻ يوجد ملخص باللغة العربية
Command and control (C&C) is the essential component of a botnet. In previous C&C using online social networks (OSNs), the botmasters identifiers are reversible. After a bot is analyzed, the botmasters accounts can be predicted in advance. Additionally, abnormal content from explicit commands may expose botmasters and raise anomalies on OSNs. To overcome these deficiencies, we proposed DeepC2, an AI-powered covert C&C method on OSNs. By leveraging neural networks, bots can find botmasters by avatars, which are converted into feature vectors and built into bots. Defenders cannot predict the botmasters accounts from the vectors in advance. Commands are embedded into normal contents (e.g., tweets and comments) using easy data augmentation and hash collision. Experiments on Twitter show that command-embedded contents can be generated efficiently, and bots can find botmasters and obtain commands accurately. Security analysis on different scenarios show that it is hard to predict the botmasters avatars. By demonstrating how AI may help promote covert communication on OSNs, this work provides a new perspective on botnet detection and confrontation.
Computer security has been plagued by increasing formidable, dynamic, hard-to-detect, hard-to-predict, and hard-to-characterize hacking techniques. Such techniques are very often deployed in self-propagating worms capable of automatically infecting v
Test automation is common in software development; often one tests repeatedly to identify regressions. If the amount of test cases is large, one may select a subset and only use the most important test cases. The regression test selection (RTS) could
Artificial intelligence (AI) technology has been increasingly used in the implementation of advanced Clinical Decision Support Systems (CDSS). Research demonstrated the potential usefulness of AI-powered CDSS (AI-CDSS) in clinical decision making sce
Botnets are increasingly used by malicious actors, creating increasing threat to a large number of internet users. To address this growing danger, we propose to study methods to detect botnets, especially those that are hard to capture with the commo
We present a demonstration of REACT, a new Real-time Educational AI-powered Classroom Tool that employs EDM techniques for supporting the decision-making process of educators. REACT is a data-driven tool with a user-friendly graphical interface. It a