ﻻ يوجد ملخص باللغة العربية
It is well-known that any Lennard-Jones type potential energy must a have periodic ground state given by a triangular lattice in dimension 2. In this paper, we describe a computer-assisted method that rigorously shows such global minimality result among $2$-dimensional lattices once the exponents of the potential have been fixed. The method is applied to the widely used classical $(12,6)$ Lennard-Jones potential, which is the main result of this work. Furthermore, a new bound on the inverse density (i.e. the co-volume) for which the triangular lattice is minimal is derived, improving those found in [L. Betermin and P. Zhang, Commun. Contemp. Math., 17 (2015), 1450049] and [L. Betermin, SIAM J. Math. Anal., 48 (2016), 3236-3269]. The same results are also shown to hold for other exponents as additional examples and a new conjecture implying the global optimality of a triangular lattice for any parameters is stated.
Birkhoff normal forms are commonly used in order to ensure the so called effective stability in the neighborhood of elliptic equilibrium points for Hamiltonian systems. From a theoretical point of view, this means that the eventual diffusion can be b
We prove an asymptotic crystallization result in two dimensions for a class of nonlocal particle systems. To be precise, we consider the best approximation with respect to the 2-Wasserstein metric of a given absolutely continuous probability measure
We consider pairwise interaction energies and we investigate their minimizers among lattices with prescribed minimal vectors (length and coordination number), i.e. the one corresponding to the crystals bonds. In particular, we show the universal mini
We develop physically admissible lattice models in the harmonic approximation which define by Hamiltons variational principle fractional Laplacian matrices of the forms of power law matrix functions on the n -dimensional periodic and infinite lattice
In this paper, we consider the scattering theory for acoustic-type equations on non-compact manifolds with a single flat end. Our main purpose is to show an existence result of non-scattering energies. Precisely, we show a Weyl-type lower bound for t