ترغب بنشر مسار تعليمي؟ اضغط هنا

A fractional generalization of the classical lattice dynamics approach

106   0   0.0 ( 0 )
 نشر من قبل Gestionnaire Hal-Upmc
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T.M. Michelitsch




اسأل ChatGPT حول البحث

We develop physically admissible lattice models in the harmonic approximation which define by Hamiltons variational principle fractional Laplacian matrices of the forms of power law matrix functions on the n -dimensional periodic and infinite lattice in n=1,2,3,..n=1,2,3,.. dimensions. The present model which is based on Hamiltons variational principle is confined to conservative non-dissipative isolated systems. The present approach yields the discrete analogue of the continuous space fractional Laplacian kernel. As continuous fractional calculus generalizes differential operators such as the Laplacian to non-integer powers of Laplacian operators, the fractional lattice approach developed in this paper generalized difference operators such as second difference operators to their fractional (non-integer) powers. Whereas differential operators and difference operators constitute local operations, their fractional generalizations introduce nonlocal long-range features. This is true for discrete and continuous fractional operators. The nonlocality property of the lattice fractional Laplacian matrix allows to describe numerous anomalous transport phenomena such as anomalous fractional diffusion and random walks on lattices. We deduce explicit results for the fractional Laplacian matrix in 1D for finite periodic and infinite linear chains and their Riesz fractional derivative continuum limit kernels.



قيم البحث

اقرأ أيضاً

An integrable Hamiltonian system presents monodromy if the action-angle variables cannot be defined globally. We consider a classical system with azimuthal symmetry and explore the topology structure of its phase space. Based on the behavior of close d orbits around singular points or regions of the energy-momentum plane, a semi-theoretical method is derived to detect classical monodromy. The validity of the monodromy test is numerically illustrated for several systems with azimuthal symmetry.
Analytic mass-spring chains with dispersionless pulse transfer and fractional revival are presented. These are obtained using the properties of the para-Racah polynomials. This provides classical analogs of the quantum spin chains that realize import ant tasks in quantum information: perfect state transfer and entanglement generation.
Upon revisiting the Hamiltonian structure of classical wavefunctions in Koopman-von Neumann theory, this paper addresses the long-standing problem of formulating a dynamical theory of classical-quantum coupling. The proposed model not only describes the influence of a classical system onto a quantum one, but also the reverse effect -- the quantum backreaction. These interactions are described by a new Hamiltonian wave equation overcoming shortcomings of currently employed models. For example, the density matrix of the quantum subsystem is always positive-definite. While the Liouville density of the classical subsystem is generally allowed to be unsigned, its sign is shown to be preserved in time for a specific infinite family of hybrid classical-quantum systems. The proposed description is illustrated and compared with previous theories using the exactly solvable model of a degenerate two-level quantum system coupled to a classical harmonic oscillator.
103 - A. Lopez-Ortega 2015
Motivated by the interest in non-relativistic quantum mechanics for determining exact solutions to the Schrodinger equation we give two potentials that are conditionally exactly solvable. The two potentials are partner potentials and we obtain that e ach linearly independent solution of the Schrodinger equation includes two hypergeometric functions. Furthermore we calculate their reflection and transmission amplitudes. Finally we discuss some additional properties of these potentials.
219 - Guo-cheng Wu 2010
Fractional variational approach has gained much attention in recent years. There are famous fractional derivatives such as Caputo derivative, Riesz derivative and Riemann-Liouville derivative. Sever
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا