ﻻ يوجد ملخص باللغة العربية
Crafting adversarial examples for the transfer-based attack is challenging and remains a research hot spot. Currently, such attack methods are based on the hypothesis that the substitute model and the victims model learn similar decision boundaries, and they conventionally apply Sign Method (SM) to manipulate the gradient as the resultant perturbation. Although SM is efficient, it only extracts the sign of gradient units but ignores their value difference, which inevitably leads to a serious deviation. Therefore, we propose a novel Staircase Sign Method (S$^2$M) to alleviate this issue, thus boosting transfer-based attacks. Technically, our method heuristically divides the gradient sign into several segments according to the values of the gradient units, and then assigns each segment with a staircase weight for better crafting adversarial perturbation. As a result, our adversarial examples perform better in both white-box and black-box manner without being more visible. Since S$^2$M just manipulates the resultant gradient, our method can be generally integrated into any transfer-based attacks, and the computational overhead is negligible. Extensive experiments on the ImageNet dataset demonstrate the effectiveness of our proposed methods, which significantly improve the transferability (i.e., on average, textbf{5.1%} for normally trained models and textbf{11.2%} for adversarially trained defenses). Our code is available at: url{https://github.com/qilong-zhang/Staircase-sign-method}.
Image classifiers based on deep neural networks suffer from harassment caused by adversarial examples. Two defects exist in black-box iterative attacks that generate adversarial examples by incrementally adjusting the noise-adding direction for each
Deep neural networks are vulnerable to adversarial examples, which poses security concerns on these algorithms due to the potentially severe consequences. Adversarial attacks serve as an important surrogate to evaluate the robustness of deep learning
Deep neural networks (DNNs) are playing key roles in various artificial intelligence applications such as image classification and object recognition. However, a growing number of studies have shown that there exist adversarial examples in DNNs, whic
Many optimization methods for generating black-box adversarial examples have been proposed, but the aspect of initializing said optimizers has not been considered in much detail. We show that the choice of starting points is indeed crucial, and that
Although great progress has been made on adversarial attacks for deep neural networks (DNNs), their transferability is still unsatisfactory, especially for targeted attacks. There are two problems behind that have been long overlooked: 1) the convent