ﻻ يوجد ملخص باللغة العربية
Although great progress has been made on adversarial attacks for deep neural networks (DNNs), their transferability is still unsatisfactory, especially for targeted attacks. There are two problems behind that have been long overlooked: 1) the conventional setting of $T$ iterations with the step size of $epsilon/T$ to comply with the $epsilon$-constraint. In this case, most of the pixels are allowed to add very small noise, much less than $epsilon$; and 2) usually manipulating pixel-wise noise. However, features of a pixel extracted by DNNs are influenced by its surrounding regions, and different DNNs generally focus on different discriminative regions in recognition. To tackle these issues, our previous work proposes a patch-wise iterative method (PIM) aimed at crafting adversarial examples with high transferability. Specifically, we introduce an amplification factor to the step size in each iteration, and one pixels overall gradient overflowing the $epsilon$-constraint is properly assigned to its surrounding regions by a project kernel. But targeted attacks aim to push the adversarial examples into the territory of a specific class, and the amplification factor may lead to underfitting. Thus, we introduce the temperature and propose a patch-wise++ iterative method (PIM++) to further improve transferability without significantly sacrificing the performance of the white-box attack. Our method can be generally integrated to any gradient-based attack methods. Compared with the current state-of-the-art attack methods, we significantly improve the success rate by 33.1% for defense models and 31.4% for normally trained models on average.
The security of object detection systems has attracted increasing attention, especially when facing adversarial patch attacks. Since patch attacks change the pixels in a restricted area on objects, they are easy to implement in the physical world, es
State-of-the-art methods for counting people in crowded scenes rely on deep networks to estimate crowd density. While effective, deep learning approaches are vulnerable to adversarial attacks, which, in a crowd-counting context, can lead to serious s
By adding human-imperceptible noise to clean images, the resultant adversarial examples can fool other unknown models. Features of a pixel extracted by deep neural networks (DNNs) are influenced by its surrounding regions, and different DNNs generall
We present a novel, real-time, semantic segmentation network in which the encoder both encodes and generates the parameters (weights) of the decoder. Furthermore, to allow maximal adaptivity, the weights at each decoder block vary spatially. For this
Perturbation-based attacks, while not physically realizable, have been the main emphasis of adversarial machine learning (ML) research. Patch-based attacks by contrast are physically realizable, yet most work has focused on 2D domain with recent fora