ﻻ يوجد ملخص باللغة العربية
Little is known about the spin-flip diffusion length $l_{rm sf}$, one of the most important material parameters in the field of spintronics. We use a density-functional-theory based scattering approach to determine values of $l_{rm sf}$ that result from electron-phonon scattering as a function of temperature for all 5d transition metal elements. $l_{rm sf}$ does not decrease monotonically with the atomic number Z but is found to be inversely proportional to the density of states at the Fermi level. By using the same local current methodology to calculate the spin Hall angle $Theta_{rm sH}$ that characterizes the efficiency of the spin Hall effect, we show that the products $rho(T)l_{rm sf}(T)$ and $Theta_{rm sH}(T)l_{rm sf}(T)$ are constant.
Using a formulation of first-principles scattering theory that includes disorder and spin-orbit coupling on an equal footing, we calculate the resistivity $rho$, spin flip diffusion length $l_{sf}$ and the Gilbert damping parameter $alpha$ for Ni$_{1
We present a semiclassical theory of spin-diffusion in a ferromagnetic metal subject to a temperature gradient. Spin-flip scattering can generate pure thermal spin currents by short-circuiting spin channels while suppressing spin accumulations. A the
We employ the spin absorption technique in lateral spin valves to extract the spin diffusion length of Permalloy (Py) as a function of temperature and resistivity. A linear dependence of the spin diffusion length with conductivity of Py is observed,
Monolayers of transition metal dichalcogenides (TMDs) have a remarkable excitonic landscape with deeply bound bright and dark exciton states. Their properties are strongly affected by lattice distortions that can be created in a controlled way via st
The spin Hall effect (SHE) is highly promising for spintronic applications, and the design of materials with large SHE can enable ultra-low power memory technology. Recently, 5d-transition metal oxides have been shown to demonstrate a large SHE. Here