ﻻ يوجد ملخص باللغة العربية
We employ the spin absorption technique in lateral spin valves to extract the spin diffusion length of Permalloy (Py) as a function of temperature and resistivity. A linear dependence of the spin diffusion length with conductivity of Py is observed, evidencing that Elliott-Yafet is the dominant spin relaxation mechanism in Permalloy. Completing the data set with additional data found in literature, we obtain $lambda_{Py}= (0.91pm 0.04) (fOmega m^2)/rho_{Py}$.
We present measurements of pure spin current absorption on lateral spin valves. By varying the width of the absorber we demonstrate that spin current absorption measurements enable to characterize efficiently the spin transport properties of ferromag
We have succeeded in fully describing dynamic properties of spin current including the different spin absorption mechanism for longitudinal and transverse spins in lateral spin valves, which enables to elucidate intrinsic spin transport and relaxatio
A high reproducibility in the performance of cobalt/copper and permalloy/copper lateral spin valves with transparent contacts is obtained by optimizing the interface quality and the purity of copper. This allows us to study comprehensively the spin i
The spin absorption process in a ferromagnetic material depends on the spin orientation relativelyto the magnetization. Using a ferromagnet to absorb the pure spin current created within a lateralspin-valve, we evidence and quantify a sizeable orient
The spin injection and accumulation in metallic lateral spin valves with transparent interfaces is studied using d.c. injection current. Unlike a.c.-based techniques, this allows investigating the effects of the direction and magnitude of the injecte