ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards a Denotational Semantics for Proofs in Constructive Modal Logic

83   0   0.0 ( 0 )
 نشر من قبل Matteo Acclavio
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we provide two new semantics for proofs in the constructive modal logics CK and CD. The first semantics is given by extending the syntax of combinatorial proofs for propositional intuitionistic logic, in which proofs are factorised in a linear fragment (arena net) and a parallel weakening-contraction fragment (skew fibration). In particular we provide an encoding of modal formulas by means of directed graphs (modal arenas), and an encoding of linear proofs as modal arenas equipped with vertex partitions satisfying topological criteria. The second semantics is given by means of winning innocent strategies of a two-player game over modal arenas. This is given by extending the Heijltjes-Hughes-Stra{ss}burger correspondence between intuitionistic combinatorial proofs and winning innocent strategies in a Hyland-Ong arena. Using our first result, we provide a characterisation of winning strategies for games on a modal arena corresponding to proofs with modalities.



قيم البحث

اقرأ أيضاً

We study a conservative extension of classical propositional logic distinguishing between four modes of statement: a proposition may be affirmed or denied, and it may be strong or classical. Proofs of strong propositions must be constructive in some sense, whereas proofs of classical propositions proceed by contradiction. The system, in natural deduction style, is shown to be sound and complete with respect to a Kripke semantics. We develop the system from the perspective of the propositions-as-types correspondence by deriving a term assignment system with confluent reduction. The proof of strong normalization relies on a translation to System F with Mendler-style recursion.
We develop a denotational semantics of Linear Logic with least and greatest fixed points in coherence spaces (where both fixed points are interpreted in the same way) and in coherence spaces with totality (where they have different interpretations). These constructions can be carried out in many different denotational models of LL (hypercoherences, Scott semantics, finiteness spaces etc). We also present a natural embedding of G{o}del System T in LL with fixed points thus enforcing the expressive power of this system as a programming language featuring both normalization and a huge expressive power in terms of data types.
122 - C. A. Middelburg 2020
This paper is concerned with the first-order paraconsistent logic LPQ$^{supset,mathsf{F}}$. A sequent-style natural deduction proof system for this logic is presented and, for this proof system, both a model-theoretic justification and a logical just ification by means of an embedding into first-order classical logic is given. For no logic that is essentially the same as LPQ$^{supset,mathsf{F}}$, a natural deduction proof system is currently available in the literature. The given embedding provides both a classical-logic explanation of this logic and a logical justification of its proof system. The major properties of LPQ$^{supset,mathsf{F}}$ are also treated.
We introduce a class of neighbourhood frames for graded modal logic embedding Kripke frames into neighbourhood frames. This class of neighbourhood frames is shown to be first-order definable but not modally definable. We also obtain a new definition of graded bisimulation with respect to Kripke frames by modifying the definition of monotonic bisimulation.
348 - Jo~ao Barbosa 2019
Types in logic programming have focused on conservative approximations of program semantics by regular types, on one hand, and on type systems based on a prescriptive semantics defined for typed programs, on the other. In this paper, we define a new semantics for logic programming, where programs evaluate to true, false, and to a new semantic value called wrong, corresponding to a run-time type error. We then have a type language with a separated semantics of types. Finally, we define a type system for logic programming and prove that it is semantically sound with respect to a semantic relation between programs and types where, if a program has a type, then its semantics is not wrong. Our work follows Milners approach for typed functional languages where the semantics of programs is independent from the semantic of types, and the type system is proved to be sound with respect to a relation between both semantics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا