ﻻ يوجد ملخص باللغة العربية
We study a conservative extension of classical propositional logic distinguishing between four modes of statement: a proposition may be affirmed or denied, and it may be strong or classical. Proofs of strong propositions must be constructive in some sense, whereas proofs of classical propositions proceed by contradiction. The system, in natural deduction style, is shown to be sound and complete with respect to a Kripke semantics. We develop the system from the perspective of the propositions-as-types correspondence by deriving a term assignment system with confluent reduction. The proof of strong normalization relies on a translation to System F with Mendler-style recursion.
In this paper we provide two new semantics for proofs in the constructive modal logics CK and CD. The first semantics is given by extending the syntax of combinatorial proofs for propositional intuitionistic logic, in which proofs are factorised in a
We present a ke-based implementation of a reasoner for a decidable fragment of (stratified) set theory expressing the description logic $dlssx$ ($shdlssx$, for short). Our application solves the main TBox and ABox reasoning problems for $shdlssx$. In
Interactive theorem provers based on dependent type theory have the flexibility to support both constructive and classical reasoning. Constructive reasoning is supported natively by dependent type theory and classical reasoning is typically supported
This paper is concerned with the first-order paraconsistent logic LPQ$^{supset,mathsf{F}}$. A sequent-style natural deduction proof system for this logic is presented and, for this proof system, both a model-theoretic justification and a logical just
We investigate the complexity consequences of adding pointer arithmetic to separation logic. Specifically, we study extensions of the points-to fragment of symbolic-heap separation logic with various forms of Presburger arithmetic constraints. Most