ترغب بنشر مسار تعليمي؟ اضغط هنا

A Constructive Logic with Classical Proofs and Refutations (Extended Version)

78   0   0.0 ( 0 )
 نشر من قبل Pablo Barenbaum
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a conservative extension of classical propositional logic distinguishing between four modes of statement: a proposition may be affirmed or denied, and it may be strong or classical. Proofs of strong propositions must be constructive in some sense, whereas proofs of classical propositions proceed by contradiction. The system, in natural deduction style, is shown to be sound and complete with respect to a Kripke semantics. We develop the system from the perspective of the propositions-as-types correspondence by deriving a term assignment system with confluent reduction. The proof of strong normalization relies on a translation to System F with Mendler-style recursion.



قيم البحث

اقرأ أيضاً

In this paper we provide two new semantics for proofs in the constructive modal logics CK and CD. The first semantics is given by extending the syntax of combinatorial proofs for propositional intuitionistic logic, in which proofs are factorised in a linear fragment (arena net) and a parallel weakening-contraction fragment (skew fibration). In particular we provide an encoding of modal formulas by means of directed graphs (modal arenas), and an encoding of linear proofs as modal arenas equipped with vertex partitions satisfying topological criteria. The second semantics is given by means of winning innocent strategies of a two-player game over modal arenas. This is given by extending the Heijltjes-Hughes-Stra{ss}burger correspondence between intuitionistic combinatorial proofs and winning innocent strategies in a Hyland-Ong arena. Using our first result, we provide a characterisation of winning strategies for games on a modal arena corresponding to proofs with modalities.
We present a ke-based implementation of a reasoner for a decidable fragment of (stratified) set theory expressing the description logic $dlssx$ ($shdlssx$, for short). Our application solves the main TBox and ABox reasoning problems for $shdlssx$. In particular, it solves the consistency problem for $shdlssx$-knowledge bases represented in set-theoretic terms, and a generalization of the emph{Conjunctive Query Answering} problem in which conjunctive queries with variables of three sorts are admitted. The reasoner, which extends and optimizes a previous prototype for the consistency checking of $shdlssx$-knowledge bases (see cite{cilc17}), is implemented in textsf{C++}. It supports $shdlssx$-knowledge bases serialized in the OWL/XML format, and it admits also rules expressed in SWRL (Semantic Web Rule Language).
140 - Russell OConnor 2010
Interactive theorem provers based on dependent type theory have the flexibility to support both constructive and classical reasoning. Constructive reasoning is supported natively by dependent type theory and classical reasoning is typically supported by adding additional non-constructive axioms. However, there is another perspective that views constructive logic as an extension of classical logic. This paper will illustrate how classical reasoning can be supported in a practical manner inside dependent type theory without additional axioms. We will see several examples of how classical results can be applied to constructive mathematics. Finally, we will see how to extend this perspective from logic to mathematics by representing classical function spaces using a weak value monad.
122 - C. A. Middelburg 2020
This paper is concerned with the first-order paraconsistent logic LPQ$^{supset,mathsf{F}}$. A sequent-style natural deduction proof system for this logic is presented and, for this proof system, both a model-theoretic justification and a logical just ification by means of an embedding into first-order classical logic is given. For no logic that is essentially the same as LPQ$^{supset,mathsf{F}}$, a natural deduction proof system is currently available in the literature. The given embedding provides both a classical-logic explanation of this logic and a logical justification of its proof system. The major properties of LPQ$^{supset,mathsf{F}}$ are also treated.
We investigate the complexity consequences of adding pointer arithmetic to separation logic. Specifically, we study extensions of the points-to fragment of symbolic-heap separation logic with various forms of Presburger arithmetic constraints. Most significantly, we find that, even in the minimal case when we allow only conjunctions of simple difference constraints (xleq x+k) where k is an integer, polynomial-time decidability is already impossible: satisfiability becomes NP-complete, while quantifier-free entailment becomes coNP-complete and quantified entailment becomes P2-complete (P2 is the second class in the polynomial-time hierarchy) In fact we prove that the upper bound is the same, P2, even for the full pointer arithmetic but with a fixed pointer offset, where we allow any Boolean combinations of the elementary formulas (x=x+k0), (xleq x+k0), and (x<x+k0), and, in addition to the points-to formulas, we allow spatial formulas of the arrays the length of which is bounded by k0 and lists which length is bounded by k0, etc, where k0 is a fixed integer. However, if we allow a significantly more expressive form of pointer arithmetic - namely arbitrary Boolean combinations of elementary formulas over arbitrary pointer sums - then the complexity increase is relatively modest for satisfiability and quantifier-free entailment: they are still NP-complete and coNP-complete respectively, and the complexity appears to increase drastically for quantified entailments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا